TY - GEN
T1 - HME: A Hyperbolic Metric Embedding Approach for Next-POI Recommendation
AU - Feng, Shanshan
AU - Tran, Lucas Vinh
AU - Cong, Gao
AU - Chen, Lisi
AU - Li, Jing
AU - Li, Fan
N1 - Funding Information:
Gao Cong is supported in part by a MOE Tier-1 grant RG114/19.
Publisher Copyright:
© 2020 ACM.
PY - 2020/7/25
Y1 - 2020/7/25
N2 - With the increasing popularity of location-aware social media services, next-Point-of-Interest (POI) recommendation has gained significant research interest. The key challenge of next-POI recommendation is to precisely learn users' sequential movements from sparse check-in data. To this end, various embedding methods have been proposed to learn the representations of check-in data in the Euclidean space. However, their ability to learn complex patterns, especially hierarchical structures, is limited by the dimensionality of the Euclidean space. To this end, we propose a new research direction that aims to learn the representations of check-in activities in a hyperbolic space, which yields two advantages. First, it can effectively capture the underlying hierarchical structures, which are implied by the power-law distributions of user movements. Second, it provides high representative strength and enables the check-in data to be effectively represented in a low-dimensional space. Specifically, to solve the next-POI recommendation task, we propose a novel hyperbolic metric embedding (HME) model, which projects the check-in data into a hyperbolic space. The HME jointly captures sequential transition, user preference, category and region information in a unified approach by learning embeddings in a shared hyperbolic space. To the best of our knowledge, this is the first study to explore a non-Euclidean embedding model for next-POI recommendation. We conduct extensive experiments on three check-in datasets to demonstrate the superiority of our hyperbolic embedding approach over the state-of-the-art next-POI recommendation algorithms. Moreover, we conduct experiments on another four online transaction datasets for next-item recommendation to further demonstrate the generality of our proposed model.
AB - With the increasing popularity of location-aware social media services, next-Point-of-Interest (POI) recommendation has gained significant research interest. The key challenge of next-POI recommendation is to precisely learn users' sequential movements from sparse check-in data. To this end, various embedding methods have been proposed to learn the representations of check-in data in the Euclidean space. However, their ability to learn complex patterns, especially hierarchical structures, is limited by the dimensionality of the Euclidean space. To this end, we propose a new research direction that aims to learn the representations of check-in activities in a hyperbolic space, which yields two advantages. First, it can effectively capture the underlying hierarchical structures, which are implied by the power-law distributions of user movements. Second, it provides high representative strength and enables the check-in data to be effectively represented in a low-dimensional space. Specifically, to solve the next-POI recommendation task, we propose a novel hyperbolic metric embedding (HME) model, which projects the check-in data into a hyperbolic space. The HME jointly captures sequential transition, user preference, category and region information in a unified approach by learning embeddings in a shared hyperbolic space. To the best of our knowledge, this is the first study to explore a non-Euclidean embedding model for next-POI recommendation. We conduct extensive experiments on three check-in datasets to demonstrate the superiority of our hyperbolic embedding approach over the state-of-the-art next-POI recommendation algorithms. Moreover, we conduct experiments on another four online transaction datasets for next-item recommendation to further demonstrate the generality of our proposed model.
KW - hyperbolic space
KW - metric embedding
KW - next-poi recommendation
UR - http://www.scopus.com/inward/record.url?scp=85090137399&partnerID=8YFLogxK
U2 - 10.1145/3397271.3401049
DO - 10.1145/3397271.3401049
M3 - Conference article published in proceeding or book
AN - SCOPUS:85090137399
T3 - SIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
SP - 1429
EP - 1438
BT - SIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
PB - Association for Computing Machinery, Inc
T2 - 43rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020
Y2 - 25 July 2020 through 30 July 2020
ER -