TY - GEN
T1 - Highly transparent conducting graphene films produced by langmuir blodgett assembly as flexible electrodes
AU - Lin, Xiuyi
AU - Jia, Jingjing
AU - Yousefi, Nariman
AU - Shen, Xi
AU - Kim, Jang Kyo
PY - 2013/4/29
Y1 - 2013/4/29
N2 - This paper reports the development of an efficient method to produce transparent conductive graphene films layer-by-layer on a flexible substrate based on the Langmuir Blodgett (LB) assembly technique. Monolayer ultralarge graphene oxide (UL-GO) sheets of average lateral size greater than 300 μm2 are prepared by repeated centrifugation of as-prepared GO aqueous dispersion. GO films having different numbers of GO layers are fabricated using the LB method while controlling the LB trough surface pressure and pulling speed of the substrate from the dispersion. GO films are chemically reduced at 90°C using hydrogen iodide (HI) acid, followed by chemical doping treatments. The sheet resistance values of the graphene thin films on a PET film are 1.8 and 1.1 kω/sq for 2 and 4 graphene layers, respectively, with a transparency of higher than 90%, which are sufficient for many useful applications. It is found that the thicker the film, the higher the conductivity; and vice versa for the transparency of the graphene films.
AB - This paper reports the development of an efficient method to produce transparent conductive graphene films layer-by-layer on a flexible substrate based on the Langmuir Blodgett (LB) assembly technique. Monolayer ultralarge graphene oxide (UL-GO) sheets of average lateral size greater than 300 μm2 are prepared by repeated centrifugation of as-prepared GO aqueous dispersion. GO films having different numbers of GO layers are fabricated using the LB method while controlling the LB trough surface pressure and pulling speed of the substrate from the dispersion. GO films are chemically reduced at 90°C using hydrogen iodide (HI) acid, followed by chemical doping treatments. The sheet resistance values of the graphene thin films on a PET film are 1.8 and 1.1 kω/sq for 2 and 4 graphene layers, respectively, with a transparency of higher than 90%, which are sufficient for many useful applications. It is found that the thicker the film, the higher the conductivity; and vice versa for the transparency of the graphene films.
UR - http://www.scopus.com/inward/record.url?scp=84880305189&partnerID=8YFLogxK
U2 - 10.1109/EMAP.2012.6507924
DO - 10.1109/EMAP.2012.6507924
M3 - Conference article published in proceeding or book
AN - SCOPUS:84880305189
SN - 9781467349444
T3 - 14th International Conference on Electronic Materials and Packaging, EMAP 2012
BT - 14th International Conference on Electronic Materials and Packaging, EMAP 2012
T2 - 14th International Conference on Electronic Materials and Packaging, EMAP 2012
Y2 - 13 December 2012 through 16 December 2012
ER -