Abstract
In the present work, the sintering temperature was able to substantially influence the microstructure and electrical properties of the lead-free ceramic 0.88NaNbO3-0.12LiTaO3. This composition without any acceptor doping presents a high mechanical quality factor, Qm, value of 1469 and a high Curie temperature of 305 °C by optimizing the sintering temperature at 1330 °C. We applied this material to make a device of disk-shaped piezoelectric transformers with a ring-dot structure and further focused on investigating the characteristics of the piezoelectric transformers. With matching load, a maximum efficiency of 92% occurs in the fundamental mode, and the maximum voltage gains are 5.5 and 3.7 for the fundamental and third radial vibration modes, respectively. The experimental results show a maximum output power of 10.5 W with a temperature rise of 27 °C. It is noteworthy that a high output power density (as high as 32.8 W cm-3) was obtained under a maximum input voltage of 180 V, which is comparable to the performance of PZT in a piezoelectric ceramic transformer device.
Original language | English |
---|---|
Article number | 065017 |
Journal | Smart Materials and Structures |
Volume | 24 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Jun 2015 |
Keywords
- ceramic
- disk-shaped
- high power density
- lead-free
- NN-based
- transformer
ASJC Scopus subject areas
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering