Abstract
A gold nanoparticle enhanced organic transistor non-volatile memory (ONVM) operated at ultralow voltages of up to -1 V has been achieved by facile room-temperature solution-processed hybrid nanolayer dielectrics. The amorphous ZrTiOx nanolayer dielectrics exhibit a high-k value of 18.9 and a high capacitance of 705 nF cm-2. With the modification of the octadecylphosphonic acid (ODPA) monolayer, the a-ZrTiOx/ODPA hybrid nanolayer dielectrics exhibit a high capacitance of 514 nF cm-2 and a very low leakage current density of 2 × 10-7 A cm -2. The pentacene transistor-based ONVMs with the a-ZrTiO x/ODPA hybrid nanolayer dielectrics could be operated in operating voltages as low as -1 V. With ultralow operating voltages, ONVMs show high performances, such as high hole mobility (0.3 cm2 V-1 s-1), large memory window (1.5 V), and long charge retention time (4 × 104 s) directly in ambient air. Our results suggest the great potential of low-temperature solution-processed hybrid nanolayer dielectrics for the realization of low-power and high-performance organic electronic devices.
Original language | English |
---|---|
Pages (from-to) | 3291-3296 |
Number of pages | 6 |
Journal | Journal of Materials Chemistry C |
Volume | 1 |
Issue number | 20 |
DOIs | |
Publication status | Published - 28 May 2013 |
ASJC Scopus subject areas
- General Chemistry
- Materials Chemistry