TY - JOUR
T1 - High-level heteroatom doped two-dimensional carbon architectures for highly efficient lithium-ion storage
AU - Wang, Zhijie
AU - Wang, Yanyan
AU - Wang, Wenhui
AU - Yu, Xiaoliang
AU - Lv, Wei
AU - Xiang, Bin
AU - He, Yan Bing
N1 - Funding Information:
This work was supported by the National Key Basic Research Program of China (2014CB932400), the National Natural Science Foundation of China (51672156 and 51232005), the Guangdong special support program (2015TQ01N401), Guangdong Province Technical Plan Project (2017B010119001 and 2017B090907005), Production-study-research cooperation project of Dongguan City (2015509119213), Shenzhen Technical Plan Project (KQJSCX20160226191136, JCYJ20170412170706047, JCYJ20170307153806471 JCYJ20150529164918734, and GJHS20170314165324888).
Publisher Copyright:
© 2018 Wang, Wang, Wang, Yu, Lv, Xiang and He.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA) are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S) doping of 0.9% and nitrogen (N) doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g-1, it still delivers a high discharge capacity of 329 mA h g-1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.
AB - In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA) are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S) doping of 0.9% and nitrogen (N) doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g-1, it still delivers a high discharge capacity of 329 mA h g-1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.
KW - 2D carbon nanomaterials
KW - Hierarchical structure
KW - High-level heteroatom doping
KW - High-rate capability
KW - Li-ion batteries
UR - http://www.scopus.com/inward/record.url?scp=85047502271&partnerID=8YFLogxK
U2 - 10.3389/fchem.2018.00097
DO - 10.3389/fchem.2018.00097
M3 - Journal article
AN - SCOPUS:85047502271
SN - 2296-2646
VL - 6
JO - Frontiers in Chemistry
JF - Frontiers in Chemistry
IS - APR
M1 - 97
ER -