Abstract
Owing to the crustal abundance of sodium element, sodium ion batteries (SIBs) are considered a promising complementary to lithium-ion battery for stationary energy storage applications. The cointercalation chemistry enables the use of cost-effective graphite as anodes, whereas the low capacity (<130 mAh g−1) and high redox potential (>0.6 V vs. Na/Na+) of graphite significantly limit the energy density of SIBs. Herein, we induce the high-capacity Na metal into sodiophilic ternary graphite intercalation compounds (t-GICs) via co-intercalation and deposition reactions, thereby achieving Na/t-GIC anodes with high capacities and low working voltage (0.18 V). The new anodes exhibit high coulombic efficiencies of above 99.7 % over 550 cycles and a high-rate capacity of 588.4 mAh g−1 at 6 C (10 min per charge). When it is paired with Na3V2(PO4)2F3 (NVPF) cathodes, the SIBs demonstrate a high energy density of 259 Wh kg−1both electrodes surpassing that of commercial LiFePO4//graphite batteries. The outstanding anode performance is attributed to the tailored sodiophilicity of graphite through manipulating the ether solvents and the in situ generated space among t-GIC flakes to stably accommodate Na metal. Our findings for stable Na plating/striping on sodiophilic graphite materials provide an effective approach for developing advanced SIBs.
Original language | English |
---|---|
Article number | e202410253 |
Number of pages | 8 |
Journal | Angewandte Chemie - International Edition |
Volume | 63 |
Issue number | 48 |
DOIs | |
Publication status | Published - 25 Nov 2024 |
Keywords
- Co-intercalation
- Graphite
- Na plating
- Sodiophilicity
- Sodium ion battery
ASJC Scopus subject areas
- Catalysis
- General Chemistry