TY - GEN
T1 - Hierarchical representation learning for bipartite graphs
AU - Li, Chong
AU - Jia, Kunyang
AU - Shen, Dan
AU - Richard Shi, C. J.
AU - Yang, Hongxia
N1 - Publisher Copyright:
© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2019/8
Y1 - 2019/8
N2 - Recommender systems on E-Commerce platforms track users' online behaviors and recommend relevant items according to each user's interests and needs. Bipartite graphs that capture both user/item feature and use-item interactions have been demonstrated to be highly effective for this purpose. Recently, graph neural network (GNN) has been successfully applied in representation of bipartite graphs in industrial recommender systems. Providing individualized recommendation on a dynamic platform with billions of users is extremely challenging. A key observation is that the users of an online E-Commerce platform can be naturally clustered into a set of communities. We propose to cluster the users into a set of communities and make recommendations based on the information of the users in the community collectively. More specifically, embeddings are assigned to the communities and the user information is decomposed into two parts, each of which captures the community-level generalizations and individualized preferences respectively. The community structure can be considered as an enhancement to the GNN methods that are inherently flat and do not learn hierarchical representations of graphs. The performance of the proposed algorithm is demonstrated on a public dataset and a world-leading E-Commerce company dataset.
AB - Recommender systems on E-Commerce platforms track users' online behaviors and recommend relevant items according to each user's interests and needs. Bipartite graphs that capture both user/item feature and use-item interactions have been demonstrated to be highly effective for this purpose. Recently, graph neural network (GNN) has been successfully applied in representation of bipartite graphs in industrial recommender systems. Providing individualized recommendation on a dynamic platform with billions of users is extremely challenging. A key observation is that the users of an online E-Commerce platform can be naturally clustered into a set of communities. We propose to cluster the users into a set of communities and make recommendations based on the information of the users in the community collectively. More specifically, embeddings are assigned to the communities and the user information is decomposed into two parts, each of which captures the community-level generalizations and individualized preferences respectively. The community structure can be considered as an enhancement to the GNN methods that are inherently flat and do not learn hierarchical representations of graphs. The performance of the proposed algorithm is demonstrated on a public dataset and a world-leading E-Commerce company dataset.
UR - https://www.scopus.com/pages/publications/85074904679
U2 - 10.24963/ijcai.2019/398
DO - 10.24963/ijcai.2019/398
M3 - Conference article published in proceeding or book
AN - SCOPUS:85074904679
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2873
EP - 2879
BT - Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
A2 - Kraus, Sarit
PB - International Joint Conferences on Artificial Intelligence
T2 - 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Y2 - 10 August 2019 through 16 August 2019
ER -