Abstract
Eye-tracking-based human fatigue detection at traffic control centers suffers from an unavoidable problem of low-quality eye-tracking data caused by noisy and missing gaze points. In this article, the authors conducted pioneering work by investigating the effects of data quality on eye-tracking-based fatigue indicators and by proposing a hierarchical-based interpolation approach to extract the eye-tracking-based fatigue indicators from low-quality eye-tracking data. This approach adaptively classified the missing gaze points and hierarchically interpolated them based on the temporal-spatial characteristics of the gaze points. In addition, the definitions of applicable fixations and saccades for human fatigue detection is proposed. Two experiments are conducted to verify the effectiveness and efficiency of the method in extracting eye-tracking-based fatigue indicators and detecting human fatigue. The results indicate that most eye-tracking parameters are significantly affected by the quality of the eye-tracking data. In addition, the proposed approach can achieve much better performance than the classic velocity threshold identification algorithm (I-VT) and a state-of-the-art method (U'n'Eye) in parsing low-quality eye-tracking data. Specifically, the proposed method attained relatively stable eye-tracking-based fatigue indicators and reported the highest accuracy in human fatigue detection. These results are expected to facilitate the application of eye movement-based human fatigue detection in practice.
Original language | English |
---|---|
Article number | 9180051 |
Pages (from-to) | 465-474 |
Number of pages | 10 |
Journal | IEEE Transactions on Human-Machine Systems |
Volume | 50 |
Issue number | 5 |
DOIs | |
Publication status | Published - Oct 2020 |
Externally published | Yes |
Keywords
- Eye movement
- hierarchical-based interpolation
- human fatigue
- traffic management
ASJC Scopus subject areas
- Human Factors and Ergonomics
- Control and Systems Engineering
- Signal Processing
- Human-Computer Interaction
- Computer Science Applications
- Computer Networks and Communications
- Artificial Intelligence