Hierarchical diffusion attention network

Zhitao Wang, Wenjie Li

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

22 Citations (Scopus)

Abstract

A series of recent studies formulated the diffusion prediction problem as a sequence prediction task and proposed several sequential models based on recurrent neural networks. However, non-sequential properties exist in real diffusion cascades, which do not strictly follow the sequential assumptions of previous work. In this paper, we propose a hierarchical diffusion attention network (HiDAN), which adopts a non-sequential framework and two-level attention mechanisms, for diffusion prediction. At the user level, a dependency attention mechanism is proposed to dynamically capture historical user-to-user dependencies and extract the dependency-aware user information. At the cascade (i.e., sequence) level, a time-aware influence attention is designed to infer possible future user's dependencies on historical users by considering both inherent user importance and time decay effects. Significantly higher effectiveness and efficiency of HiDAN over state-of-the-art sequential models are demonstrated when evaluated on three real diffusion datasets. The further case studies illustrate that HiDAN can accurately capture diffusion dependencies.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3828-3834
Number of pages7
ISBN (Electronic)9780999241141
DOIs
Publication statusPublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Hierarchical diffusion attention network'. Together they form a unique fingerprint.

Cite this