TY - GEN
T1 - Hierarchical diffusion attention network
AU - Wang, Zhitao
AU - Li, Wenjie
N1 - Publisher Copyright:
© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2019
Y1 - 2019
N2 - A series of recent studies formulated the diffusion prediction problem as a sequence prediction task and proposed several sequential models based on recurrent neural networks. However, non-sequential properties exist in real diffusion cascades, which do not strictly follow the sequential assumptions of previous work. In this paper, we propose a hierarchical diffusion attention network (HiDAN), which adopts a non-sequential framework and two-level attention mechanisms, for diffusion prediction. At the user level, a dependency attention mechanism is proposed to dynamically capture historical user-to-user dependencies and extract the dependency-aware user information. At the cascade (i.e., sequence) level, a time-aware influence attention is designed to infer possible future user's dependencies on historical users by considering both inherent user importance and time decay effects. Significantly higher effectiveness and efficiency of HiDAN over state-of-the-art sequential models are demonstrated when evaluated on three real diffusion datasets. The further case studies illustrate that HiDAN can accurately capture diffusion dependencies.
AB - A series of recent studies formulated the diffusion prediction problem as a sequence prediction task and proposed several sequential models based on recurrent neural networks. However, non-sequential properties exist in real diffusion cascades, which do not strictly follow the sequential assumptions of previous work. In this paper, we propose a hierarchical diffusion attention network (HiDAN), which adopts a non-sequential framework and two-level attention mechanisms, for diffusion prediction. At the user level, a dependency attention mechanism is proposed to dynamically capture historical user-to-user dependencies and extract the dependency-aware user information. At the cascade (i.e., sequence) level, a time-aware influence attention is designed to infer possible future user's dependencies on historical users by considering both inherent user importance and time decay effects. Significantly higher effectiveness and efficiency of HiDAN over state-of-the-art sequential models are demonstrated when evaluated on three real diffusion datasets. The further case studies illustrate that HiDAN can accurately capture diffusion dependencies.
UR - http://www.scopus.com/inward/record.url?scp=85074950142&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2019/531
DO - 10.24963/ijcai.2019/531
M3 - Conference article published in proceeding or book
AN - SCOPUS:85074950142
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 3828
EP - 3834
BT - Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
A2 - Kraus, Sarit
PB - International Joint Conferences on Artificial Intelligence
T2 - 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Y2 - 10 August 2019 through 16 August 2019
ER -