Hexagon-Based Convolutional Neural Network for Supply-Demand Forecasting of Ride-Sourcing Services

Jintao Ke, Hai Yang, Hongyu Zheng, Xiqun Chen, Yitian Jia, Pinghua Gong, Jieping Ye

Research output: Journal article publicationJournal articleAcademic researchpeer-review

117 Citations (Scopus)

Abstract

Ride-sourcing services are becoming an increasingly popular transportation mode in cities all over the world. With real-time information from both drivers and passengers, the ride-sourcing platform can reduce matching frictions and improve efficiencies by surge pricing, optimal vehicle-trip assignment, and proactive ridesplitting strategies. An important foundation of these strategies is the short-term supply-demand forecasting. In this paper, we tackle the problem of predicting the short-term supply-demand gap of ride-sourcing services. In contrast to the previous studies that partitioned a city area into numerous square lattices, we partition the city area into various regular hexagon lattices, which is motivated by the fact that hexagonal segmentation has an unambiguous neighborhood definition, smaller edge-to-area ratio, and isotropy. To capture the spatio-temporal characteristics in a hexagonal manner, we propose three hexagon-based convolutional neural networks (H-CNN), both the input and output of which are numerous local hexagon maps. Moreover, a hexagon-based ensemble mechanism is developed to enhance the prediction performance. Validated by a 3-week real-world ride-sourcing dataset in Guangzhou, China, the H-CNN models are found to significantly outperform the benchmark algorithms in terms of accuracy and robustness. Our approaches can be further extended to a broad range of spatio-temporal forecasting problems in the domain of shared mobility and urban computing.

Original languageEnglish
Article number8566163
Pages (from-to)4160-4173
Number of pages14
JournalIEEE Transactions on Intelligent Transportation Systems
Volume20
Issue number11
DOIs
Publication statusPublished - Nov 2019
Externally publishedYes

Keywords

  • deep learning (DL)
  • hexagon-based convolutional neural network (H-CNN)
  • on-demand ride service
  • ride-sourcing service
  • Short-term supply-demand forecasting

ASJC Scopus subject areas

  • Automotive Engineering
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Hexagon-Based Convolutional Neural Network for Supply-Demand Forecasting of Ride-Sourcing Services'. Together they form a unique fingerprint.

Cite this