Heterogeneous, mesoporous NiCo2O4-MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies

Mohammad Akbari Garakani, Sara Abouali, Zheng Long Xu, Jiaqiang Huang, Jian Qiu Huang, Jang Kyo Kim (Corresponding Author)

Research output: Journal article publicationJournal articleAcademic researchpeer-review

111 Citations (Scopus)

Abstract

A major challenge of state-of-the-art supercapacitors as promising energy storage devices lies in their relatively low capacitances and low specific energies. Herein, we report a strategic assembly of two excellent pseudocapacitive materials. Heterogeneous NiCo2O4-MnO2 arrays consisting of a mesoporous NiCo2O4 nanowire core and a cross-linked MnO2 nanosheet shell are grown on a freestanding graphene foam (GF) for ultrahigh-performance supercapacitors. The electrode exhibits a remarkable gravimetric specific capacitance of 2577 F g−1 at 1 A g−1 and areal capacitance of 5.15 F cm−2 at 2 mA cm−2, as well as exceptional capacitance retention of 94.3% after 5000 cycles. An asymmetric supercapacitor assembled with NiCo2O4-MnO2/GF and CNT/GF composites as the positive and negative electrodes, respectively, delivers a maximum specific energy of 55.1 W h kg−1 at a specific power of 187.5 W kg−1. The core/shell strategy adopted here to deposit two active materials on a 3D conductive matrix offers a new insight into assembling ternary hybrids for high-performance electrodes in real-world applications.

Original languageEnglish
Pages (from-to)3547-3557
Number of pages11
JournalJournal of Materials Chemistry A
Volume5
Issue number7
DOIs
Publication statusPublished - 2017
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'Heterogeneous, mesoporous NiCo2O4-MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies'. Together they form a unique fingerprint.

Cite this