TY - JOUR
T1 - Heterogeneous Diels–Alder tandem catalysis for converting cellulose and polyethylene into BTX
AU - Wang, Jia
AU - Jiang, Jianchun
AU - Sun, Yunjuan
AU - Meng, Xianzhi
AU - Wang, Xiaobo
AU - Ruan, Roger
AU - Ragauskas, Arthur J.
AU - Tsang, Daniel C.W.
N1 - Funding Information:
The authors are grateful for the National Natural Science Foundation of China (No. 52006106 ), the Natural Science Foundation of Jiangsu Province (No. BK2020789 ), the China Postdoctoral Science Foundation (No. 2020TQ0154 ), the Hong Kong Research Grants Council (PolyU 15217818 ), and the Jiangsu Province Key Laboratory of Biomass Energy and Materials ( JSBEM-S-202002 ).
Publisher Copyright:
© 2021 Elsevier B.V.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/7/15
Y1 - 2021/7/15
N2 - Producing biomass-derived aromatic hydrocarbons via controllable Diels–Alder reactions is a promising approach to recover energy and chemicals from waste streams. A tandem Diels–Alder catalysis consisting of SAPO-34 and Fe/HZSM-5 (stacked catalysis or mixed catalysis) was evaluated for thermochemical conversion of cellulose and polyethylene blends into benzene, toluene, and xylenes (BTX). Aromatization catalyst type significantly affected the activity of tandem catalysis, and the BTX obtained from the HZSM-5 stacked catalysis was ~2.3 times higher than that of the USY stacked one. An introduction of Fe active promoters into HZSM-5 increased the Lewis to Brønsted acid sites molar ratio (L/B) from 0.4 to 4.1. The comparison between Fe/HZSM-5 stacked catalysis and parent HZSM-5 single catalysis indicated that the former was more effective for BTX production, obtaining a nearly two-fold increase in yield with a high selectivity of 82.8%. A close proximity between Fe/HZSM-5 and SAPO-34 in the mixed catalysis increased the BTX enhancement to 1.8. A synergistic effect was provided by the coordination of Lewis and Brønsted acid sites in the Fe/HZSM-5 mixed catalysts for facilitating BTX generation, achieving a maximum of 25.9% at a Fe/HZSM-5 to SAPO-34 mass ratio of 1:1 with a theoretical L/B of 7.2. This work provides a sustainable strategy to produce biomass-derived aromatic hydrocarbons.
AB - Producing biomass-derived aromatic hydrocarbons via controllable Diels–Alder reactions is a promising approach to recover energy and chemicals from waste streams. A tandem Diels–Alder catalysis consisting of SAPO-34 and Fe/HZSM-5 (stacked catalysis or mixed catalysis) was evaluated for thermochemical conversion of cellulose and polyethylene blends into benzene, toluene, and xylenes (BTX). Aromatization catalyst type significantly affected the activity of tandem catalysis, and the BTX obtained from the HZSM-5 stacked catalysis was ~2.3 times higher than that of the USY stacked one. An introduction of Fe active promoters into HZSM-5 increased the Lewis to Brønsted acid sites molar ratio (L/B) from 0.4 to 4.1. The comparison between Fe/HZSM-5 stacked catalysis and parent HZSM-5 single catalysis indicated that the former was more effective for BTX production, obtaining a nearly two-fold increase in yield with a high selectivity of 82.8%. A close proximity between Fe/HZSM-5 and SAPO-34 in the mixed catalysis increased the BTX enhancement to 1.8. A synergistic effect was provided by the coordination of Lewis and Brønsted acid sites in the Fe/HZSM-5 mixed catalysts for facilitating BTX generation, achieving a maximum of 25.9% at a Fe/HZSM-5 to SAPO-34 mass ratio of 1:1 with a theoretical L/B of 7.2. This work provides a sustainable strategy to produce biomass-derived aromatic hydrocarbons.
KW - Aromatic hydrocarbons
KW - Biomass waste
KW - Catalytic pyrolysis
KW - Plastics waste
KW - Sustainable waste management
UR - http://www.scopus.com/inward/record.url?scp=85102012039&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2021.125418
DO - 10.1016/j.jhazmat.2021.125418
M3 - Journal article
AN - SCOPUS:85102012039
SN - 0304-3894
VL - 414
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 125418
ER -