Harnessing cavity dissipation for enhanced sound absorption in Helmholtz resonance metamaterials

Xinwei Li, Xiang Yu, Jun Wei Chua, Wei Zhai

Research output: Journal article publicationJournal articleAcademic researchpeer-review

17 Citations (Scopus)

Abstract

Helmholtz resonance, based on resonance through a pore-and-cavity structure, constitutes the primary sound absorption mechanism in majority of sound-absorbing metamaterials. Typically, enhancing sound absorption in such absorbers necessitates substantial geometrical redesign or the addition of dissipative materials, which is non-ideal considering the volume and mass constraints. Herein, we introduce a new approach - that is to simply reshape the cavity, without alterations to its overall mass and volume - to drastically enhance sound absorption. This is achieved by bringing the cavity walls close to the pores where additional thermoviscous dissipation along these boundaries can occur. Experimentally validated, with three sides of the cuboid cavity close to the pore and at a particular pore-cavity geometry, a 44% gain in maximum absorption is achieved compared to the original structure. Through numerical simulations, we fully elucidate structure-property relationships and their mechanisms, and propose analytical models for design and optimization. Ultimately, utilizing this concept, we demonstrate a heterogeneously porous broadband (1500 to 6000 Hz) absorber that exhibits an excellent average absorption coefficient of 0.74 at a very low thickness of 18 mm. Overall, we introduce a new and universal concept that could revolutionize the design principles of Helmholtz resonators, and demonstrate its potential for designing advanced sound-absorbing metamaterials.

Original languageEnglish
Pages (from-to)2892-2903
Number of pages12
JournalMaterials Horizons
Volume10
Issue number8
DOIs
Publication statusPublished - 4 May 2023

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Process Chemistry and Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Harnessing cavity dissipation for enhanced sound absorption in Helmholtz resonance metamaterials'. Together they form a unique fingerprint.

Cite this