TY - JOUR
T1 - H-ProSeg
T2 - Hybrid ultrasound prostate segmentation based on explainability-guided mathematical model
AU - Peng, Tao
AU - Wu, Yiyun
AU - Qin, Jing
AU - Wu, Qingrong Jackie
AU - Cai, Jing
N1 - Funding Information:
This work was partly supported by Innovation and Technology Fund Projects, Hong Kong, No. ITS/080/19.
Publisher Copyright:
© 2022
PY - 2022/6
Y1 - 2022/6
N2 - Background and Objective: Accurate and robust prostate segmentation in transrectal ultrasound (TRUS) images is of great interest for image-guided prostate interventions and prostate cancer diagnosis. However, it remains a challenging task for various reasons, including a missing or ambiguous boundary between the prostate and surrounding tissues, the presence of shadow artifacts, intra-prostate intensity heterogeneity, and anatomical variations. Methods: Here, we present a hybrid method for prostate segmentation (H-ProSeg) in TRUS images, using a small number of radiologist-defined seed points as the prior points. This method consists of three subnetworks. The first subnetwork uses an improved principal curve-based model to obtain data sequences consisting of seed points and their corresponding projection index. The second subnetwork uses an improved differential evolution-based artificial neural network for training to decrease the model error. The third subnetwork uses the parameters of the artificial neural network to explain the smooth mathematical description of the prostate contour. The performance of the H-ProSeg method was assessed in 55 brachytherapy patients using Dice similarity coefficient (DSC), Jaccard similarity coefficient (Ω), and accuracy (ACC) values. Results: The H-ProSeg method achieved excellent segmentation accuracy, with DSC, Ω, and ACC values of 95.8%, 94.3%, and 95.4%, respectively. Meanwhile, the DSC, Ω, and ACC values of the proposed method were as high as 93.3%, 91.9%, and 93%, respectively, due to the influence of Gaussian noise (standard deviation of Gaussian function, σ = 50). Although the σ increased from 10 to 50, the DSC, Ω, and ACC values fluctuated by a maximum of approximately 2.5%, demonstrating the excellent robustness of our method. Conclusions: Here, we present a hybrid method for accurate and robust prostate ultrasound image segmentation. The H-ProSeg method achieved superior performance compared with current state-of-the-art techniques. The knowledge of precise boundaries of the prostate is crucial for the conservation of risk structures. The proposed models have the potential to improve prostate cancer diagnosis and therapeutic outcomes.
AB - Background and Objective: Accurate and robust prostate segmentation in transrectal ultrasound (TRUS) images is of great interest for image-guided prostate interventions and prostate cancer diagnosis. However, it remains a challenging task for various reasons, including a missing or ambiguous boundary between the prostate and surrounding tissues, the presence of shadow artifacts, intra-prostate intensity heterogeneity, and anatomical variations. Methods: Here, we present a hybrid method for prostate segmentation (H-ProSeg) in TRUS images, using a small number of radiologist-defined seed points as the prior points. This method consists of three subnetworks. The first subnetwork uses an improved principal curve-based model to obtain data sequences consisting of seed points and their corresponding projection index. The second subnetwork uses an improved differential evolution-based artificial neural network for training to decrease the model error. The third subnetwork uses the parameters of the artificial neural network to explain the smooth mathematical description of the prostate contour. The performance of the H-ProSeg method was assessed in 55 brachytherapy patients using Dice similarity coefficient (DSC), Jaccard similarity coefficient (Ω), and accuracy (ACC) values. Results: The H-ProSeg method achieved excellent segmentation accuracy, with DSC, Ω, and ACC values of 95.8%, 94.3%, and 95.4%, respectively. Meanwhile, the DSC, Ω, and ACC values of the proposed method were as high as 93.3%, 91.9%, and 93%, respectively, due to the influence of Gaussian noise (standard deviation of Gaussian function, σ = 50). Although the σ increased from 10 to 50, the DSC, Ω, and ACC values fluctuated by a maximum of approximately 2.5%, demonstrating the excellent robustness of our method. Conclusions: Here, we present a hybrid method for accurate and robust prostate ultrasound image segmentation. The H-ProSeg method achieved superior performance compared with current state-of-the-art techniques. The knowledge of precise boundaries of the prostate is crucial for the conservation of risk structures. The proposed models have the potential to improve prostate cancer diagnosis and therapeutic outcomes.
KW - Accurate prostate segmentation
KW - Differential evolution-based machine learning
KW - Explainability-guided mathematical model
KW - Principal curve
KW - Transrectal ultrasound
UR - http://www.scopus.com/inward/record.url?scp=85126887585&partnerID=8YFLogxK
U2 - 10.1016/j.cmpb.2022.106752
DO - 10.1016/j.cmpb.2022.106752
M3 - Journal article
C2 - 35338887
AN - SCOPUS:85126887585
SN - 0169-2607
VL - 219
JO - Computer Methods and Programs in Biomedicine
JF - Computer Methods and Programs in Biomedicine
M1 - 106752
ER -