Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator

G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse, G.T.M. Nguyen, F. Vidal, Wei Chen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

234 Citations (Scopus)

Abstract

© 2015 Macmillan Publishers Limited. All rights reserved. Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we report a graphitic carbon nitride nanosheet electrode-based ionic actuator that displays high electrochemical activity and electromechanical conversion abilities, including large specific capacitance (259.4 F g-1) with ionic liquid as the electrolyte, fast actuation response (0.5±0.03% in 300 ms), large electromechanical strain (0.93±0.03%) and high actuation stability (100,000 cycles) under 3 V. The key to the high performance lies in the hierarchical pore structure with dominant size <2 nm, optimal pyridinic nitrogen active sites (6.78%) and effective conductivity (382 S m-1) of the electrode. Our study represents an important step towards artificial muscle technology in which heteroatom modulation in electrodes plays an important role in promoting electrochemical actuation performance.
Original languageEnglish
Article number7258
JournalNature Communications
Volume6
DOIs
Publication statusPublished - 1 Jun 2015
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator'. Together they form a unique fingerprint.

Cite this