Abstract
Aqueous aggregation processes can significantly impact function, effective toxicity, environmental transport, and ultimate fate of advanced nanoscale materials, including graphene and graphene oxide (GO). In this work, we have synthesized flat graphene oxide (GO) and five physically crumpled GOs (CGO, with different degrees of thermal reduction, and thus oxygen functionality) using an aerosol method, and characterized the evolution of surface chemistry and morphology using a suite of spectroscopic (UV-vis, FTIR, XPS) and microscopic (AFM, SEM, and TEM) techniques. For each of these materials, critical coagulation concentrations (CCC) were determined for NaCl, CaCl2, and MgCl2 electrolytes. The CCCs were correlated with material ζ-potentials (R2 = 0.94-0.99), which were observed to be mathematically consistent with classic DLVO theory. We further correlated CCC values with CGO chemical properties including C/O ratios, carboxyl group concentrations, and C-C fractions. For all cases, edge-based carboxyl functional groups are highly correlated to observed CCC values (R2 = 0.89-0.95). Observations support the deprotonation of carboxyl groups with low acid dissociation constants (pKa) as the main contributors to ζ-potentials and thus material aqueous stability. We also observe CCC values to significantly increase (by 18-80%) when GO is physically crumpled as CGO. Taken together, the findings from both physical and chemical analyses clearly indicate that both GO shape and surface functionality are critical to consider with regard to understanding fundamental material behavior in water.
Original language | English |
---|---|
Pages (from-to) | 6964-6973 |
Number of pages | 10 |
Journal | Environmental Science and Technology |
Volume | 50 |
Issue number | 13 |
DOIs | |
Publication status | Published - 5 Jul 2016 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry