Abstract
Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures.
Original language | English |
---|---|
Pages (from-to) | 8152-8162 |
Number of pages | 11 |
Journal | ACS Nano |
Volume | 8 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Jan 2014 |
Externally published | Yes |
Keywords
- catalysis
- ceria
- gold nanocrystals
- hot electrons
- metal-semiconductor hybrid nanostructures
- plasmon resonance
ASJC Scopus subject areas
- General Materials Science
- General Engineering
- General Physics and Astronomy