Glucose-sensitive CFTR suppresses Glucagon secretion by potentiating katp channels in pancreatic islet a cells

Wen Qing Huang, Jing Hui Guo, Xiao Hu Zhang, Mei Kuen Yu, Yiu Wa Chung, Yechun Ruan, Hsiao Chang Chan

Research output: Journal article publicationJournal articleAcademic researchpeer-review

23 Citations (Scopus)

Abstract

The secretion of glucagon by islet a cells is normally suppressed by high blood glucose, but this suppressibility is impaired in patients with diabetes or cystic fibrosis (CF), a disease caused by mutations in the gene encoding CF transmembrane conductance regulator (CFTR), a cyclic adenosine monophosphate-activated Cl2 channel. However, precisely how glucose regulates glucagon release remains controversial. Here we report that elevated glucagon secretion, together with increased glucose-induced membrane depolarization and Ca2+response, is found in CFTR mutant (DF508) mice/islets compared with the wild-Type. Overexpression of CFTR in AlphaTC1-9 cells results in membrane hyperpolarization and reduced glucagon release, which can be reversed by CFTR inhibition. CFTR is found to potentiate the adenosine triphosphate-sensitive K+(KATP) channel because membrane depolarization and whole-cell currents sensitive to KATPblockers are significantly greater in wild-Type/CFTR-overexpressed a cells compared with that in DF508/nonoverexpressed cells. KATPknockdown also reverses the suppressive effect of CFTR overexpression on glucagon secretion. The results reveal that by potentiating KATPchannels, CFTR acts as a glucosesensing negative regulator of glucagon secretion in a cells, a defect of which may contribute to glucose intolerance in CF and other types of diabetes.
Original languageEnglish
Pages (from-to)3188-3199
Number of pages12
JournalEndocrinology
Volume158
Issue number10
DOIs
Publication statusPublished - 1 Oct 2017

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Glucose-sensitive CFTR suppresses Glucagon secretion by potentiating katp channels in pancreatic islet a cells'. Together they form a unique fingerprint.

Cite this