Abstract
While advances in sensor and signal processing techniques have provided effective tools for quantitative research on traditional Chinese pulse diagnosis (TCPD), the automatic classification of pulse waveforms is remained a difficult problem. To address this issue, this paper proposed a novel edit distance with real penalty (ERP)-based k-nearest neighbors (KNN) classifier by referring to recent progresses in time series matching and KNN classifier. Taking advantage of the metric property of ERP, we first develop a Gaussian ERP kernel, and then embed it into kernel difference-weighted KNN classifier. The proposed Gaussian ERP kernel classifier is evaluated on a dataset which includes 2470 pulse waveforms. Experimental results show that the proposed classifier is much more accurate than several other pulse waveform classification approaches.
Original language | English |
---|---|
Title of host publication | Proceedings - 2010 20th International Conference on Pattern Recognition, ICPR 2010 |
Pages | 2736-2739 |
Number of pages | 4 |
DOIs | |
Publication status | Published - 18 Nov 2010 |
Event | 2010 20th International Conference on Pattern Recognition, ICPR 2010 - Istanbul, Turkey Duration: 23 Aug 2010 → 26 Aug 2010 |
Conference
Conference | 2010 20th International Conference on Pattern Recognition, ICPR 2010 |
---|---|
Country/Territory | Turkey |
City | Istanbul |
Period | 23/08/10 → 26/08/10 |
Keywords
- Edit distance with real penalty
- K-nearest neighbors
- Kernel method
- Pulse diagnosis
- Pulse waveform
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition