Abstract
Background G-Quadruplex is a highly polymorphic structure, and its behavior in acidic condition has not been well studied. Methods Circular dichroism (CD) spectra were used to study the conformational change of G-quadruplex. The thermal stabilities of the G-quadruplex were measured with CD melting. Interconversion kinetics profiles were investigated by using CD kinetics. The fluorescence of the inserted 2-Aminopurine (Ap) was monitored during pH change and acrylamide quenching, indicating the status of the loop. Proton NMR was adopted to help illustrate the change of the conformation. Results G-Quadruplex of specific loop was found to be able to transform upon pH variation. The transformation was resulted from the loop rearrangement. After screening of a library of diverse G-quadruplex, a sequence exhibiting the best transformation property was found. A pH-driven nanoswitch with three gears was obtained based on this transition cycle. Conclusions Certain G-quadruplex was found to go through conformational change at low pH. Loop was the decisive factor controlling the interconversion upon pH variation. G-Quadruplex with TT central loop could be converted in a much milder condition than the one with TTA loop. It can be used to design pH-driven nanodevices such as a nanoswitch. General significance These results provide more insights into G-quadruplex polymorphism, and also contribute to the design of DNA-based nanomachines and logic gates.
Original language | English |
---|---|
Pages (from-to) | 4935-4942 |
Number of pages | 8 |
Journal | Biochimica et Biophysica Acta - General Subjects |
Volume | 1830 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2 Oct 2013 |
Keywords
- Acidic pH
- Conformational interconversion
- G-Quadruplex
- Nanoswitch
- pH-driven Thiazole orange (TO)
ASJC Scopus subject areas
- Biochemistry
- Biophysics
- Molecular Biology