Fusion of aerial, MMS and backpack images and point clouds for optimized 3D mapping in urban areas

Zhaojin Li, Bo Wu, Yuan Li, Zeyu Chen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

4 Citations (Scopus)


Photorealistic 3D models are important data sources for digital twin cities and smart city applications. These models are usually generated from data collected by aerial or ground-based platforms (e.g., mobile mapping systems (MMSs) and backpack systems) separately. Aerial and ground-based platforms capture data from overhead and ground surfaces, respectively, offering complementary information for better 3D mapping in urban areas. Particularly, backpack mapping systems have gained popularity for 3D mapping in urban areas in recent years, as they offer more flexibility to reach regions (e.g., narrow alleys and pedestrian routes) inaccessible by vehicle-based MMSs. However, integration of aerial and ground data for 3D mapping suffers from difficulties such as tie-point matching among images from different platforms with large differences in perspective, coverage, and scale. Optimal fusion of the results from different platforms is also challenging. Therefore, this paper presents a novel method for the fusion of aerial, MMS, and backpack images and point clouds for optimized 3D mapping in urban areas. A geometric-aware model for feature matching is developed based on the SuperGlue algorithm to obtain sufficient tie-points between aerial and ground images, which facilitates the integrated bundle adjustment of images to reduce their geometric inconsistencies and the subsequent dense image matching to generate 3D point clouds from different image sources. After that, a graph-based method considering both geometric and texture traits is developed for the optimal fusion of point clouds from different sources to generate 3D mesh models of better quality. Experiments conducted on a challenging dataset in Hong Kong demonstrated that the geometric-aware model could obtain sufficient accurately matched tie-points among the aerial, MMS, and backpack images, which enabled the integrated bundle adjustment of the three image datasets to generate properly aligned point clouds. Compared with the results obtained from state-of-the-art commercial software, the 3D mesh models generated from the proposed point cloud fusion method exhibited better quality in terms of completeness, consistency, and level of detail.

Original languageEnglish
Pages (from-to)463-478
Number of pages16
JournalISPRS Journal of Photogrammetry and Remote Sensing
Publication statusPublished - Aug 2023


  • 3D mapping
  • Aerial oblique imagery
  • Backpack
  • Mobile mapping system (MMS)

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Computer Science Applications
  • Computers in Earth Sciences


Dive into the research topics of 'Fusion of aerial, MMS and backpack images and point clouds for optimized 3D mapping in urban areas'. Together they form a unique fingerprint.

Cite this