TY - GEN
T1 - Full-scale metamaterial window for building application
AU - Fusaro, Gioia
AU - Yu, Xiang
AU - Cui, Fangsen
AU - Kang, Jian
N1 - Publisher Copyright:
© Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020. All rights reserved.
PY - 2020/8/23
Y1 - 2020/8/23
N2 - The research on acoustic metamaterials (AMMs) has progressed rapidly over the last decades. One of the applications is for noise control and airflow in duct-like systems. These are useful features for natural ventilation window design; however, the visual impact between indoor and outdoor environment, as another key factor of windows, makes the existing AMMs not directly useable for this application due to their geometrical complexity and size limitations. In this research, an AMM previously developed by the authors is exploited for full-scale window design. The AMM is packed only in the window frame so that the window transparency is not compromised. A broadband attenuation performance is obtained by the resonant unit cells constituting the AMM. The effect of the geometric variation on the window performance in terms of both acoustics and the airflow is analysed numerically through Finite Element Method (FEM) models. The performances of different AMM windows are evaluated and compared with those of conventional window designs. The simulation results show that this new AMM-based window design can overcome the limitations of the conventional windows, with great potential in real applications.
AB - The research on acoustic metamaterials (AMMs) has progressed rapidly over the last decades. One of the applications is for noise control and airflow in duct-like systems. These are useful features for natural ventilation window design; however, the visual impact between indoor and outdoor environment, as another key factor of windows, makes the existing AMMs not directly useable for this application due to their geometrical complexity and size limitations. In this research, an AMM previously developed by the authors is exploited for full-scale window design. The AMM is packed only in the window frame so that the window transparency is not compromised. A broadband attenuation performance is obtained by the resonant unit cells constituting the AMM. The effect of the geometric variation on the window performance in terms of both acoustics and the airflow is analysed numerically through Finite Element Method (FEM) models. The performances of different AMM windows are evaluated and compared with those of conventional window designs. The simulation results show that this new AMM-based window design can overcome the limitations of the conventional windows, with great potential in real applications.
UR - http://www.scopus.com/inward/record.url?scp=85101369211&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85101369211
T3 - Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020
BT - Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020
A2 - Jeon, Jin Yong
PB - Korean Society of Noise and Vibration Engineering
T2 - 49th International Congress and Exposition on Noise Control Engineering, INTER-NOISE 2020
Y2 - 23 August 2020 through 26 August 2020
ER -