Abstract
The Hong Kong–Zhuhai–Macau Bridge (HZMB) is a 55-km bridge-tunnel system, including a 6.7-km undersea tunnel that adopts the sidewall smoke extraction system. To evaluate the potential tunnel fire hazards, a 1:1 full-scale HZMB tunnel section model (16 m × 7.2 m × 150 m) was constructed, and eight full-scale tunnel fire tests were conducted with the sidewall smoke extraction. The temperature distribution and smoke movement under different vent arrangements and fire sizes (1.2–6.6 MW) were quantified. Results indicated that the fire HRR was mainly affected by the size of the liquid-fuel pool but insensitive to the arrangement of ventilation. The correlation between HRR and diesel pool-fire area can be fitted by a linear function of HRR=1.24AF-0.87 MW. The sidewall smoke extraction generated a tilted fire plume and non-uniform temperature distribution at the transverse direction, whereas the temperature decay still followed the exponential decay for the far fire field region. The decay factor increases with the increase of the HRR and increases when distributing the ventilation capability into two vent groups. A relatively slow smoke motion (0.8–1.2 m/s) and good smoke stratification were demonstrated in the tests, indicating a robust condition for safe evacuation. This research deepens the understanding of fire and smoke characteristics in tunnels with the sidewall extraction and highlights the importance of full-scale test data in the development of the smart tunnel-fire protection system.
Original language | English |
---|---|
Article number | 104374 |
Journal | Tunnelling and Underground Space Technology |
Volume | 122 |
DOIs | |
Publication status | Published - Apr 2022 |
Keywords
- Database
- Sidewall extraction
- Smoke movement
- Temperature field
- Tunnel fire
ASJC Scopus subject areas
- Building and Construction
- Geotechnical Engineering and Engineering Geology