Abstract
Plantation softwood timber poles are associated with low natural durability, and it is also not clear what the effects of the high humidity environment on the long-term performance of composite action integrity of such a system. This paper presents a durability study for the proposed composite poles using (GFRP) glass fiber-reinforced polymer as a confinement system on wooden poles sourced from plantation softwood timber. Radiata pine poles of 6 m length were wrapped with multiple layers of 0°/90° woven roving biaxial E-glass fiber sheets through a wet layup process as confinement. The prepared GFRP softwood poles were then subjected to high humidity environmental conditions of up to 95 ± 2% relative humidity and 22 ± 2 °C temperature for a period of 30 months. Various lengths of confinement were considered in this study ranging from 0% to 70% of the span length. The poles had a span length of 5.4 m and were tested using a three-point bending test. Results showed that the proposed confinement system of GFRP-softwood provided a satisfactory long-term performance and the high humidity environment did not greatly affect the improvement in the mechanical performance that the GFRP system provided.
Original language | English |
---|---|
Article number | 343 |
Journal | Forests |
Volume | 14 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2023 |
Keywords
- bonding
- confinement
- durability
- fiber-reinforced polymer
- humidity
- softwood timber
ASJC Scopus subject areas
- Forestry