From Synthetic to Real: Image Dehazing Collaborating with Unlabeled Real Data

Ye Liu, Lei Zhu, Shunda Pei, Huazhu Fu, Jing Qin, Qing Zhang, Liang Wan, Wei Feng

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

2 Citations (Scopus)

Abstract

Single image dehazing is a challenging task, for which the domain shift between synthetic training data and real-world testing images usually leads to degradation of existing methods. To address this issue, we propose a novel image dehazing framework collaborating with unlabeled real data. First, we develop a disentangled image dehazing network (DID-Net), which disentangles the feature representations into three component maps, i.e. the latent haze-free image, the transmission map, and the global atmospheric light estimate, respecting the physical model of a haze process. Our DID-Net predicts the three component maps by progressively integrating features across scales, and refines each map by passing an independent refinement network. Then a disentangled-consistency mean-teacher network (DMT-Net) is employed to collaborate unlabeled real data for boosting single image dehazing. Specifically, we encourage the coarse predictions and refinements of each disentangled component to be consistent between the student and teacher networks by using a consistency loss on unlabeled real data. We make comparison with 13 state-of-the-art dehazing methods on a new collected dataset (Haze4K) and two widely-used dehazing datasets (i.e., SOTS and HazeRD), as well as on real-world hazy images. Experimental results demonstrate that our method has obvious quantitative and qualitative improvements over the existing methods.

Original languageEnglish
Title of host publicationMM 2021 - Proceedings of the 29th ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages50-58
Number of pages9
ISBN (Electronic)9781450386517
DOIs
Publication statusPublished - 17 Oct 2021
Event29th ACM International Conference on Multimedia, MM 2021 - Virtual, Online, China
Duration: 20 Oct 202124 Oct 2021

Publication series

NameMM 2021 - Proceedings of the 29th ACM International Conference on Multimedia

Conference

Conference29th ACM International Conference on Multimedia, MM 2021
Country/TerritoryChina
CityVirtual, Online
Period20/10/2124/10/21

Keywords

  • feature disentangling
  • single image dehazing
  • unlabeled real data

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Software
  • Computer Graphics and Computer-Aided Design

Cite this