TY - JOUR
T1 - Franck-Condon simulation, including anharmonicity, of the photodetachment spectrum of P2H-: Restricted-spin coupled-cluster single-double plus perturbative triple and unrestricted-spin coupled-cluster single-double plus perturbative triple -F12x potential energy functions of P2H and P2H-
AU - Mok, Kam Wah
AU - Lee, Edmond P.F.
AU - Chau, Foo Tim
AU - Dyke, John M.
PY - 2011/9/28
Y1 - 2011/9/28
N2 - Geometry optimization and harmonic vibrational frequency calculations have been carried out on the X̃2A′ state of P2H and the X̃1A′ state of P2H-using the restricted-spin coupled-cluster single-double plus perturbative triple excitation RCCSD(T) and explicitly correlated unrestricted-spin coupled-cluster single-double plus perturbative triple excitation UCCSD(T)-F12x methods. For RCCSD(T) calculations, basis sets of up to the augmented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z) quality were employed, and contributions from extrapolation to the complete basis set limit and from core correlation of the P 2s22p6electrons were also included. For UCCSD(T)-F12x calculations, different atomic orbital basis sets of triple-zeta quality with different associated complementary auxiliary basis sets and different geminal Slater exponents were used. When the P 2s22p6core electrons were correlated in these F12x calculations, appropriate core-valence basis sets were employed. In addition, potential energy functions (PEFs) of the X̃2A′ state of P2H and the X̃1A′ state of P2H-were computed at different RCCSD(T) and UCCSD(T)-F12x levels, and were used in variational calculations of anharmonic vibrational wavefunctions, which were then utilized to calculate Franck-Condon factors (FCFs) between these two states, employing a method which includes allowance for anharmonicity and Duschinsky rotation. The photodetachment spectrum of P2H-was then simulated using the computed FCFs. Simulated spectra obtained using the RCCSD(T)aug-cc-pV5Z and UCCSD(T)-F12x(x a or b)aug-cc-pCVTZ PEFs are compared and found to be essentially identical. Based on the computed FCFs, a more detailed assignment of the observed vibrational structure than previously reported, which includes hot bands, has been proposed. Comparison between simulated and available experimental spectra has been made, and the currently most reliable sets of equilibrium geometrical parameters for P2H and its anion have been derived. The photodetachment spectrum of P2D, yet to be recorded, has also been simulated.
AB - Geometry optimization and harmonic vibrational frequency calculations have been carried out on the X̃2A′ state of P2H and the X̃1A′ state of P2H-using the restricted-spin coupled-cluster single-double plus perturbative triple excitation RCCSD(T) and explicitly correlated unrestricted-spin coupled-cluster single-double plus perturbative triple excitation UCCSD(T)-F12x methods. For RCCSD(T) calculations, basis sets of up to the augmented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z) quality were employed, and contributions from extrapolation to the complete basis set limit and from core correlation of the P 2s22p6electrons were also included. For UCCSD(T)-F12x calculations, different atomic orbital basis sets of triple-zeta quality with different associated complementary auxiliary basis sets and different geminal Slater exponents were used. When the P 2s22p6core electrons were correlated in these F12x calculations, appropriate core-valence basis sets were employed. In addition, potential energy functions (PEFs) of the X̃2A′ state of P2H and the X̃1A′ state of P2H-were computed at different RCCSD(T) and UCCSD(T)-F12x levels, and were used in variational calculations of anharmonic vibrational wavefunctions, which were then utilized to calculate Franck-Condon factors (FCFs) between these two states, employing a method which includes allowance for anharmonicity and Duschinsky rotation. The photodetachment spectrum of P2H-was then simulated using the computed FCFs. Simulated spectra obtained using the RCCSD(T)aug-cc-pV5Z and UCCSD(T)-F12x(x a or b)aug-cc-pCVTZ PEFs are compared and found to be essentially identical. Based on the computed FCFs, a more detailed assignment of the observed vibrational structure than previously reported, which includes hot bands, has been proposed. Comparison between simulated and available experimental spectra has been made, and the currently most reliable sets of equilibrium geometrical parameters for P2H and its anion have been derived. The photodetachment spectrum of P2D, yet to be recorded, has also been simulated.
UR - http://www.scopus.com/inward/record.url?scp=80053477578&partnerID=8YFLogxK
U2 - 10.1063/1.3640037
DO - 10.1063/1.3640037
M3 - Journal article
SN - 0021-9606
VL - 135
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 12
M1 - 124312
ER -