TY - JOUR
T1 - Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model
T2 - A case study in talesh, northern iran
AU - Ghorbani, Mohammad Ali
AU - Kazempour, Reza
AU - Chau, Kwok Wing
AU - Shamshirband, Shahaboddin
AU - Ghazvinei, Pezhman Taherei
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Accurate simulation of evaporation plays an important role in the efficient management of water Resources. Generally, evaporation is measured using the direct method where Class A pan-evaporimeter is used, and an indirect method that includes empirical equations. However, despite its widespread usage, Class A pan-evaporimeter method can be affected by human and instrumentation errors. Empirical equations, on the other hand, are generally linked to the different climatic factors that should provide initial or boundary conditions in the mathematical equations that affect the rate of evaporation. Considering these challenging, heuristic soft computing approaches that do not need key information about the physics of evaporation. In this study, a Quantum-behaved Particle Swarm Optimization algorithm, embedded into a multi-layer perceptron technique, is developed to estimate the evaporation rates over a daily forecast horizon. The measured evaporation data from 2012–2014 for Talesh meteorological station located in Northern Iran are employed. The predictive accuracy of the MLP-QPSO model is evaluated with existing methods: i.e. a hybrid MLP-PSO and a standalone MLP model. The results are evaluated in respect to statistical performance criterion: the mean absolute error, root mean square error (RMSE), Willmott’s Index and the Nash–Sutcliffe coefficient. In conjunction with these metrics, Taylor diagrams are also utilized to assess the level of agreement between the forecasted and observed evaporation data. Evidently, the hybrid MLP-QPSO model is confirmed to be an optimal forecasting tool applied for estimating daily pan evaporation, outperforming both the hybrid MLP-PSO and the standalone model.In light of these results, the present study justifies the potential utility of the hybrid MLP-QPSO model to be applied for estimating daily evaporation rates in North of Iran.
AB - Accurate simulation of evaporation plays an important role in the efficient management of water Resources. Generally, evaporation is measured using the direct method where Class A pan-evaporimeter is used, and an indirect method that includes empirical equations. However, despite its widespread usage, Class A pan-evaporimeter method can be affected by human and instrumentation errors. Empirical equations, on the other hand, are generally linked to the different climatic factors that should provide initial or boundary conditions in the mathematical equations that affect the rate of evaporation. Considering these challenging, heuristic soft computing approaches that do not need key information about the physics of evaporation. In this study, a Quantum-behaved Particle Swarm Optimization algorithm, embedded into a multi-layer perceptron technique, is developed to estimate the evaporation rates over a daily forecast horizon. The measured evaporation data from 2012–2014 for Talesh meteorological station located in Northern Iran are employed. The predictive accuracy of the MLP-QPSO model is evaluated with existing methods: i.e. a hybrid MLP-PSO and a standalone MLP model. The results are evaluated in respect to statistical performance criterion: the mean absolute error, root mean square error (RMSE), Willmott’s Index and the Nash–Sutcliffe coefficient. In conjunction with these metrics, Taylor diagrams are also utilized to assess the level of agreement between the forecasted and observed evaporation data. Evidently, the hybrid MLP-QPSO model is confirmed to be an optimal forecasting tool applied for estimating daily pan evaporation, outperforming both the hybrid MLP-PSO and the standalone model.In light of these results, the present study justifies the potential utility of the hybrid MLP-QPSO model to be applied for estimating daily evaporation rates in North of Iran.
KW - Forecasting
KW - Hybrid model
KW - Pan evaporation
KW - PSO
KW - QPSO
UR - http://www.scopus.com/inward/record.url?scp=85058654954&partnerID=8YFLogxK
U2 - 10.1080/19942060.2018.1517052
DO - 10.1080/19942060.2018.1517052
M3 - Journal article
AN - SCOPUS:85058654954
SN - 1994-2060
VL - 12
SP - 724
EP - 737
JO - Engineering Applications of Computational Fluid Mechanics
JF - Engineering Applications of Computational Fluid Mechanics
IS - 1
ER -