Fluorescence Imaging and Photodynamic Inactivation of Bacteria Based on Cationic Cyclometalated Iridium(III) Complexes with Aggregation-Induced Emission Properties

Po Yu Ho, Sin Ying Lee, Chuen Kam, Junfei Zhu, Guo Gang Shan, Yuning Hong, Wai Yeung Wong, Sijie Chen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

14 Citations (Scopus)

Abstract

Antibacterial photodynamic therapy (PDT) is one of the emerging methods for curbing multidrug-resistant bacterial infections. Effective fluorescent photosensitizers with dual functions of bacteria imaging and PDT applications are highly desirable. In this study, three cationic and heteroleptic cyclometalated Ir(III) complexes with the formula of [Ir(CˆN)2(NˆN)][PF6] are prepared and characterized. These Ir(III) complexes named Ir(ppy)2bP, Ir(1-pq)2bP, and Ir(2-pq)2bP are comprised of three CˆN ligands (i.e., 2-phenylpyridine (ppy), 1-phenylisoquinoline (1-pq), and 2-phenylquinoline (2-pq)) and one NˆN bidentate co-ligand (bP). The photophysical characterizations demonstrate that these Ir(III) complexes are red-emitting, aggregation-induced emission active luminogens. The substitution of phenylpyridine with phenylquinoline isomers in the molecules greatly enhances their UV and visible-light absorbance as well as the photoinduced reactive oxygen species (ROS) generation ability. All three Ir(III) complexes can stain both Gram-positive and Gram-negative bacteria efficiently. Interestingly, even though Ir(1-pq)2bP and Ir(2-pq)2bP are constitutional isomers with very similar structures and similar ROS generation ability in buffer, the former eradicates bacteria much more effectively than the other through white light-irradiated photodynamic inactivation. This work will provide valuable information on the rational design of Ir(III) complexes for fluorescence imaging and efficient photodynamic inactivation of bacteria.

Original languageEnglish
Article number2100706
JournalAdvanced healthcare materials
Volume10
Issue number24
DOIs
Publication statusPublished - 22 Dec 2021

Keywords

  • aggregation-induced emission
  • bacteria
  • iridium(III) complexes
  • photodynamic inactivation
  • photosensitizers

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering
  • Pharmaceutical Science

Fingerprint

Dive into the research topics of 'Fluorescence Imaging and Photodynamic Inactivation of Bacteria Based on Cationic Cyclometalated Iridium(III) Complexes with Aggregation-Induced Emission Properties'. Together they form a unique fingerprint.

Cite this