Flexural fatigue behavior of ultra-high performance concrete under low temperatures

Xin Tian, Zhi Fang, Shaokun Liu, Yu Xiang, Qimu Zhu, Yi Shao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

2 Citations (Scopus)

Abstract

Ultra-high performance concrete (UHPC) shows superior mechanical performance, which leads to increasing applications in infrastructure constructions that are subjected to different loading (i.e., flexure, tension, compression, etc.) and environmental conditions (ambient, freeze, etc.). Among them, the flexural performance of UHPC under low temperatures (i.e., sub-zero temperature) is still little understood especially under fatigue loading. To investigate the flexural fatigue properties of UHPC under low temperatures, eleven UHPC prisms are subjected to cyclic bending at different stress levels from 0.40 to 0.80 (the ratio between applied maximum fatigue stress and static flexural strength) and temperatures of 20 °C, -10 °C, and -20 °C. Results indicate that the fracture interfaces for specimens under static and fatigue loading exhibit distinct differences. No fiber buckling appears for the monotonically-loaded specimens, while for specimens under fatigue loading, fibers buckled and fractured. Low temperature improves the mechanical properties of UHPC under monotonic loading due to enhanced matrix strength. Conversely, low temperature adversely affects the flexural fatigue performance of UHPC due to the cold brittleness nature of matrix and steel fibers, leading to the accumulation of matrix deterioration and the fracture of steel fiber. When the temperature drops from 20 °C to -10 °C and -20 °C, there is a 15.0 % and 12.7 % decline in the flexural fatigue strength of UHPC, respectively. In addition, low temperature accelerates the degradation of UHPC, resulting in a larger and faster accumulation of fatigue deformation, including tensile strain, mid-span deflection, and fatigue deformation modulus.

Original languageEnglish
Article number105550
JournalCement and Concrete Composites
Volume150
DOIs
Publication statusPublished - Jul 2024

Keywords

  • Fatigue
  • Flexure
  • Low temperature
  • Ultra-high performance concrete (UHPC)

ASJC Scopus subject areas

  • Building and Construction
  • General Materials Science

Fingerprint

Dive into the research topics of 'Flexural fatigue behavior of ultra-high performance concrete under low temperatures'. Together they form a unique fingerprint.

Cite this