Flexible unsupervised feature extraction for image classification

Yang Liu, Feiping Nie, Quanxue Gao, Xinbo Gao, Jungong Han, Ling Shao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

13 Citations (Scopus)

Abstract

Dimensionality reduction is one of the fundamental and important topics in the fields of pattern recognition and machine learning. However, most existing dimensionality reduction methods aim to seek a projection matrix W such that the projection W T x is exactly equal to the true low-dimensional representation. In practice, this constraint is too rigid to well capture the geometric structure of data. To tackle this problem, we relax this constraint but use an elastic one on the projection with the aim to reveal the geometric structure of data. Based on this context, we propose an unsupervised dimensionality reduction model named flexible unsupervised feature extraction (FUFE) for image classification. Moreover, we theoretically prove that PCA and LPP, which are two of the most representative unsupervised dimensionality reduction models, are special cases of FUFE, and propose a non-iterative algorithm to solve it. Experiments on five real-world image databases show the effectiveness of the proposed model.

Original languageEnglish
Pages (from-to)65-71
Number of pages7
JournalNeural Networks
Volume115
DOIs
Publication statusPublished - 1 Jul 2019
Externally publishedYes

Keywords

  • Dimensionality reduction
  • Feature extraction
  • Unsupervised

ASJC Scopus subject areas

  • Cognitive Neuroscience
  • Artificial Intelligence

Cite this