Flexible Triboelectric Nanogenerators based on Hydrogel/g-C3N4 Composites for Biomechanical Energy Harvesting and Self-Powered Sensing

Yana Xiao, Zihua Li, Bingang Xu (Corresponding Author)

Research output: Journal article publicationJournal articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Flexible and stretchable triboelectric nanogenerators (TENGs) have been rapidly advanced owing to the demand for portable and wearable electronic devices that can work under universal or motional circumstances. While versatile materials can be applied in a TENG as dielectric materials, flexible and cost-effective electrodes are crucially important for the output performance of TENGs. Herein, we developed a poly(vinyl alcohol) (PVA) hydrogel TENG doped with a novel two-dimensional material, graphitic carbon nitride (g-C3N4), which could act as both a cost-effective flexible electrode and a positive dielectric for TENG with different morphologies. The measured peak-to-peak open-circuit voltage of the TENG reached 80 V at a dopant concentration of 2.7 wt % in single-electrode mode, which is far higher than that of the pristine PVA hydrogel TENG. As a demonstration of the application, the g-C3N4/PVA hydrogel TENG can be adopted as electronic skin to monitor the movement of the human body. Low-frequency mechanical energy-harvesting devices in different morphologies including discoid flake shape, tube shape, and spiral shape in the single-electrode mode or contact-separation mode have been designed, fabricated, and evaluated. All of these merits of the proposed hydrogel TENG after doping two-dimensional (2D) material g-C3N4 have demonstrated their promising potential for versatile applications in biomechanical energy harvesting and self-powered sensing.

Original languageEnglish
Pages (from-to)13674-13684
Number of pages11
JournalACS Applied Materials and Interfaces
Volume16
Issue number11
DOIs
Publication statusPublished - 20 Mar 2024

Keywords

  • energy harvesting
  • graphitic carbon nitride
  • hydrogel
  • poly(vinyl alcohol)
  • triboelectric nanogenerator

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Flexible Triboelectric Nanogenerators based on Hydrogel/g-C3N4 Composites for Biomechanical Energy Harvesting and Self-Powered Sensing'. Together they form a unique fingerprint.

Cite this