TY - JOUR
T1 - Flavonoid dimers as bivalent modulators for pentamidine and sodium stiboglucanate resistance in Leishmania
AU - Wong, Iris L.K.
AU - Chan, Kin Fai
AU - Burkett, Brendan A.
AU - Zhao, Yunzhe
AU - Chai, Yi
AU - Sun, Hongzhe
AU - Chan, Tak Hang
AU - Chow, Ming Cheung
PY - 2007/3/1
Y1 - 2007/3/1
N2 - Drug resistance by overexpression of ATP-binding cassette (ABC) transporters is an impediment in the treatment of leishmaniasis. Flavonoids are known to reverse multidrug resistance (MDR) in Leishmania and mammalian cancers by inhibiting ABC transporters. Here, we found that synthetic flavonoid dimers with three (compound 9c) or four (compound 9d) ethylene glycol units exhibited a significantly higher reversing activity than other shorter or longer ethylene glycol-ligated dimers, with ∼3-fold sensitization of pentamidine and sodium stibogluconate (SSG) resistance in Leishmania, respectively. This modulatory effect was dosage dependent and not observed in apigenin monomers with the linker, suggesting that the modulatory effect is due to its bivalent nature. The mechanism of reversal activity was due to increased intracellular accumulation of pentamidine and total antimony in Leishmania. Compared to other MDR modulators such as verapamil, reserpine, quinine, quinacrine, and quinidine, compounds 9c and 9d were the only agents that can reverse SSG resistance. In terms of reversing pentamidine resistance, 9c and 9d have activities comparable to those of reserpine and quinacrine. Modulators 9c and 9d exhibited reversal activity on pentamidine resistance among LeMDR1-/-, LeMDR1+/+, and LeMDR1-overexpressed mutants, suggesting that these modulators are specific to a non-LeMDR1 pentamidine transporter. The LeMDR1 copy number is inversely related to pentamidine resistance, suggesting that it might be involved in importing pentamidine into the mitochondria. In summary, bivalency could be a useful strategy for the development of more potent ABC transporter modulators and flavonoid dimers represent a promising reversal agent for overcoming pentamidine and SSG resistance in parasite Leishmania.
AB - Drug resistance by overexpression of ATP-binding cassette (ABC) transporters is an impediment in the treatment of leishmaniasis. Flavonoids are known to reverse multidrug resistance (MDR) in Leishmania and mammalian cancers by inhibiting ABC transporters. Here, we found that synthetic flavonoid dimers with three (compound 9c) or four (compound 9d) ethylene glycol units exhibited a significantly higher reversing activity than other shorter or longer ethylene glycol-ligated dimers, with ∼3-fold sensitization of pentamidine and sodium stibogluconate (SSG) resistance in Leishmania, respectively. This modulatory effect was dosage dependent and not observed in apigenin monomers with the linker, suggesting that the modulatory effect is due to its bivalent nature. The mechanism of reversal activity was due to increased intracellular accumulation of pentamidine and total antimony in Leishmania. Compared to other MDR modulators such as verapamil, reserpine, quinine, quinacrine, and quinidine, compounds 9c and 9d were the only agents that can reverse SSG resistance. In terms of reversing pentamidine resistance, 9c and 9d have activities comparable to those of reserpine and quinacrine. Modulators 9c and 9d exhibited reversal activity on pentamidine resistance among LeMDR1-/-, LeMDR1+/+, and LeMDR1-overexpressed mutants, suggesting that these modulators are specific to a non-LeMDR1 pentamidine transporter. The LeMDR1 copy number is inversely related to pentamidine resistance, suggesting that it might be involved in importing pentamidine into the mitochondria. In summary, bivalency could be a useful strategy for the development of more potent ABC transporter modulators and flavonoid dimers represent a promising reversal agent for overcoming pentamidine and SSG resistance in parasite Leishmania.
UR - http://www.scopus.com/inward/record.url?scp=33847607921&partnerID=8YFLogxK
U2 - 10.1128/AAC.00998-06
DO - 10.1128/AAC.00998-06
M3 - Journal article
C2 - 17194831
SN - 0066-4804
VL - 51
SP - 930
EP - 940
JO - Antimicrobial Agents and Chemotherapy
JF - Antimicrobial Agents and Chemotherapy
IS - 3
ER -