Field investigation of a vibration monitoring wireless sensor network on a huge cantilever structure

H. F. Zhou, J. L. Liu, Yiqing Ni, D. P. Zhu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

To advance wireless structural monitoring systems mature into a reliable substitute to wired structural monitoring systems, efforts should be paid to investigate their in-field performance on real civil structures, especially complex mega structures. This study carries out an investigation into a vibration monitoring wireless sensor network (WSN) for modal identification of a huge cantilever structure. The testbed under study is the New Headquarters of Shenzhen Stock Exchange (NHSSE). One outstanding feature of NHSSE is its huge floating platform, which is a steel truss structure with an overall plan dimension of 98x162 m and a total height of 24 m. It overhangs from the main tower 36 m along the long axis and 22 m along the short axis at a height of 36 m above the ground, making it the largest cantilever structure in the world. Recognizing the uniqueness of this floating platform, the performance of the WSN for ambient vibration measurement of this structure is examined. A preliminary two-point simultaneous acceleration measurement using the WSN is reported in this paper. The preliminary study demonstrates that the WSN is capable of measuring the ambient vibration and identifying the modal properties of a huge cantilever structure.
Original languageEnglish
Title of host publicationSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011
Volume7981
DOIs
Publication statusPublished - 26 May 2011
EventSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011 - San Diego, CA, United States
Duration: 7 Mar 201110 Mar 2011

Conference

ConferenceSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011
Country/TerritoryUnited States
CitySan Diego, CA
Period7/03/1110/03/11

Keywords

  • ambient vibration
  • cantilever structure
  • structural health monitoring
  • tall building
  • wireless sensor network

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Field investigation of a vibration monitoring wireless sensor network on a huge cantilever structure'. Together they form a unique fingerprint.

Cite this