Abstract
Lithium-sulfur (Li-S) batteries are seriously restrained by the shuttling effect of intermediary products and their further reduction on the anode surface. Considerable researches have been devoted to overcoming these issues by introducing carbon-based materials as the sulfur host or interlayer in the Li-S systems. Herein, we constructed a multifunctional interlayer on a separator by inserting Fe3O4 nanoparticles (NPs) in a porous graphene (PG) film to immobilize polysulfides effectively. The porous structure of graphene was optimized by controlling the oxidation conditions for facilitating ion transfer. The polar Fe3O4 NPs were employed to trap sulfur species via strong chemical interaction. By exploiting the PG-Fe3O4 interlayer with optimal porous structure and component, the Li-S battery delivered a superior cycling performance and rate capability. The reversible discharge capacity could be maintained at 732 mAh g-1 after 500 cycles and 356 mAh g-1 after total 2000 cycles at 1 C with a final capacity retention of 49%. Moreover, a capacity of 589 mAh g-1 could also be maintained even at 2 C rate.
Original language | English |
---|---|
Pages (from-to) | 26264-26273 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 10 |
Issue number | 31 |
DOIs | |
Publication status | Published - 8 Aug 2018 |
Keywords
- FeO nanoparticles
- interlayer
- lithium-sulfur batteries
- multifunctional
- porous graphene
ASJC Scopus subject areas
- General Materials Science