Abstract
The stable sandwich structure and the excellent redox activity of ferrocene make it a ubiquitous component in organometallic systems. The introduction of a ferrocenyl unit into a polymer skeleton provides a good avenue towards novel materials for various applications in redox batteries, enantioselective catalysis, optical and magnetic switches, etc. Herein, we report a strategic design and synthesis of new ferrocene-based hyperbranched polymers, and demonstrate promising methods for their morphology control as spheres by direct coupling reactions and hollow polyhedra by a templating approach. Furthermore, task-specific applications targeted for their respective architectures are investigated in lithium ion batteries (LIBs) and water treatment, respectively. The spherical polymer used as an electroactive anode in LIBs has a high capacity of 755.2 mA h g-1, stable chargeable performance of over 200 cycles and superior rate capability. For comparison, the hollow counterpart shows a sharp increase of the specific surface area in the precursor-derived magnetic ceramics from 417 to 1195 m2 g-1, and the as-made material exhibits great potential for the rapid removal of trace amounts of pollutants in water with magnetic reusability. This journal is
Original language | English |
---|---|
Pages (from-to) | 10774-10780 |
Number of pages | 7 |
Journal | Journal of Materials Chemistry C |
Volume | 8 |
Issue number | 31 |
DOIs | |
Publication status | Published - 21 Aug 2020 |
ASJC Scopus subject areas
- General Chemistry
- Materials Chemistry