TY - JOUR
T1 - Feasibility and effects of virtual reality motor-cognitive training in community-dwelling older people with cognitive frailty
T2 - Pilot randomized controlled trial
AU - Kwan, Rick Yiu Cho
AU - Liu, Justina Yat Wa
AU - Fong, Kenneth Nai Kuen
AU - Qin, Jing
AU - Leung, Philip Kwok Yuen
AU - Sin, Olive Suk Kan
AU - Hon, Pik Yuen
AU - Suen, Lydia W.
AU - Tse, Man Kei
AU - Lai, Claudia K.Y.
N1 - Funding Information:
The authors wish to thank Ms Claire Chan and Ms Abigail Kam for their assistance with the intervention implementation. This study would not have been possible without the support of the Innovation and Technology Fund for Better Living (application number ITB/FBL/4015/19/P); School of Nursing, The Hong Kong Polytechnic University for providing financial support; and Pok Oi Hospital for providing logistic and administrative support.
Publisher Copyright:
© Rick Yiu Cho Kwan, Justina Yat Wa Liu, Kenneth Nai Kuen Fong, Jing Qin, Philip Kwok-Yuen Leung, Olive Suk Kan Sin, Pik Yuen Hon, Lydia W Suen, Man-Kei Tse, Claudia KY Lai. Originally published in JMIR Serious Games (https://games.jmir.org),06.08.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Serious Games, is properly cited. The complete bibliographic information, a link to the original publication on https://games.jmir.org, as well as this copyright and license information must be included.
PY - 2021/8/6
Y1 - 2021/8/6
N2 - Background: Cognitive frailty refers to the coexistence of physical frailty and cognitive impairment, and is associated with many adverse health outcomes. Although cognitive frailty is prevalent in older people, motor-cognitive training is effective at enhancing cognitive and physical function. We proposed a virtual reality (VR) simultaneous motor-cognitive training program, which allowed older people to perform daily activities in a virtual space mimicking real environments. Objective: We aimed to (1) explore the feasibility of offering VR simultaneous motor-cognitive training to older people with cognitive frailty and (2) compare its effects with an existing motor-cognitive training program in the community on the cognitive function and physical function of older people with cognitive frailty. Methods: A two-arm (1:1), assessor-blinded, parallel design, randomized controlled trial was employed. The eligibility criteria for participants were: (1) aged ≥60 years, (2) community dwelling, and (3) with cognitive frailty. Those in the intervention group received cognitive training (ie, cognitive games) and motor training (ie, cycling on an ergometer) simultaneously on a VR platform, mimicking the daily living activities of older people. Those in the control group received cognitive training (ie, cognitive games) on tablet computers and motor training (ie, cycling on the ergometer) sequentially on a non-VR platform. Both groups received a 30-minute session twice a week for 8 weeks. Feasibility was measured by adherence, adverse outcomes, and successful learning. The outcomes were cognitive function, physical frailty level, and walking speed. Results: Seventeen participants were recruited and randomized to either the control group (n=8) or intervention group (n=9). At baseline, the median age was 74.0 years (IQR 9.5) and the median Montreal Cognitive Assessment score was 20.0 (IQR 4.0). No significant between-group differences were found in baseline characteristics except in the number of chronic illnesses (P=.04). At postintervention, the intervention group (Z=-2.67, P=.01) showed a significantly larger improvement in cognitive function than the control group (Z=-1.19, P=.24). The reduction in physical frailty in the intervention group (Z=-1.73, P=.08) was similar to that in the control group (Z=-1.89, P=.06). Improvement in walking speed based on the Timed Up-and-Go test was moderate in the intervention group (Z=-0.16, P=.11) and greater in the control group (Z=-2.52, P=.01). The recruitment rate was acceptable (17/33, 52%). Both groups had a 100% attendance rate. The intervention group had a higher completion rate than the control group. Training was terminated for one participant (1/9, 11%) due to minimal VR sickness (Virtual Reality Sickness Questionnaire score=18.3/100). Two participants (2/8, 25%) in the control group withdrew due to moderate leg pain. No injuries were observed in either group. Conclusions: This study provides preliminary evidence that the VR simultaneous motor-cognitive training is effective at enhancing the cognitive function of older people with cognitive frailty. The effect size on frailty was close to reaching a level of significance and was similar to that observed in the control group. VR training is feasible and safe for older people with cognitive frailty.
AB - Background: Cognitive frailty refers to the coexistence of physical frailty and cognitive impairment, and is associated with many adverse health outcomes. Although cognitive frailty is prevalent in older people, motor-cognitive training is effective at enhancing cognitive and physical function. We proposed a virtual reality (VR) simultaneous motor-cognitive training program, which allowed older people to perform daily activities in a virtual space mimicking real environments. Objective: We aimed to (1) explore the feasibility of offering VR simultaneous motor-cognitive training to older people with cognitive frailty and (2) compare its effects with an existing motor-cognitive training program in the community on the cognitive function and physical function of older people with cognitive frailty. Methods: A two-arm (1:1), assessor-blinded, parallel design, randomized controlled trial was employed. The eligibility criteria for participants were: (1) aged ≥60 years, (2) community dwelling, and (3) with cognitive frailty. Those in the intervention group received cognitive training (ie, cognitive games) and motor training (ie, cycling on an ergometer) simultaneously on a VR platform, mimicking the daily living activities of older people. Those in the control group received cognitive training (ie, cognitive games) on tablet computers and motor training (ie, cycling on the ergometer) sequentially on a non-VR platform. Both groups received a 30-minute session twice a week for 8 weeks. Feasibility was measured by adherence, adverse outcomes, and successful learning. The outcomes were cognitive function, physical frailty level, and walking speed. Results: Seventeen participants were recruited and randomized to either the control group (n=8) or intervention group (n=9). At baseline, the median age was 74.0 years (IQR 9.5) and the median Montreal Cognitive Assessment score was 20.0 (IQR 4.0). No significant between-group differences were found in baseline characteristics except in the number of chronic illnesses (P=.04). At postintervention, the intervention group (Z=-2.67, P=.01) showed a significantly larger improvement in cognitive function than the control group (Z=-1.19, P=.24). The reduction in physical frailty in the intervention group (Z=-1.73, P=.08) was similar to that in the control group (Z=-1.89, P=.06). Improvement in walking speed based on the Timed Up-and-Go test was moderate in the intervention group (Z=-0.16, P=.11) and greater in the control group (Z=-2.52, P=.01). The recruitment rate was acceptable (17/33, 52%). Both groups had a 100% attendance rate. The intervention group had a higher completion rate than the control group. Training was terminated for one participant (1/9, 11%) due to minimal VR sickness (Virtual Reality Sickness Questionnaire score=18.3/100). Two participants (2/8, 25%) in the control group withdrew due to moderate leg pain. No injuries were observed in either group. Conclusions: This study provides preliminary evidence that the VR simultaneous motor-cognitive training is effective at enhancing the cognitive function of older people with cognitive frailty. The effect size on frailty was close to reaching a level of significance and was similar to that observed in the control group. VR training is feasible and safe for older people with cognitive frailty.
KW - Cognitive frailty
KW - Feasibility
KW - Frail
KW - Game
KW - Motor-cognitive training
KW - Older adults
KW - Pilot study
KW - Randomized controlled trial
KW - Training
KW - Virtual reality
KW - VR
UR - http://www.scopus.com/inward/record.url?scp=85112075730&partnerID=8YFLogxK
U2 - 10.2196/28400
DO - 10.2196/28400
M3 - Journal article
AN - SCOPUS:85112075730
SN - 2291-9279
VL - 9
JO - JMIR Serious Games
JF - JMIR Serious Games
IS - 3
M1 - e28400
ER -