Abstract
While piezoelectric impedance/admittance measurements have been used for fault detection and identification, the actual identification of fault location and severity remains to be a challenging topic. On one hand, the approach that uses these measurements entertains high detection sensitivity owing to the high-frequency actuation/sensing nature. On the other hand, high-frequency analysis requires high dimensionality in the model and the subsequent inverse analysis contains a very large number of unknowns which often renders the identification problem under-determined. A new fault identification algorithm is developed in this research for piezoelectric impedance/admittance based measurement. Taking advantage of the algebraic relation between the sensitivity matrix and the admittance change measurement, we devise a pre-screening scheme that can rank the likelihoods of fault locations with estimated fault severity levels, which drastically reduces the fault parameter space. A Bayesian inference approach is then incorporated to pinpoint the fault location and severity with high computational efficiency. The proposed approach is examined and validated through case studies.
Original language | English |
---|---|
Article number | 045007 |
Journal | Smart Materials and Structures |
Volume | 26 |
Issue number | 4 |
DOIs | |
Publication status | Published - 24 Feb 2017 |
Externally published | Yes |
Keywords
- Bayesian inference
- fault identification
- piezoelectric impedance/admittance
- pre-screening
- sensitivity
- uncertainty
ASJC Scopus subject areas
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering