Abstract
Red Li3BaSrLa3(WO4)8:Eu3+phosphors have been successfully synthesized by a rapid microwave-assisted solid state method. The sintering time for the optimal phosphor can be limited to only 10 minutes at 900 °C. Upon near-ultra-violet (NUV) excitation, strong red emission can be found in 90% Eu3+doped tungstate compounds. This phosphor exhibits impressive thermal stability, and the purity of red emission Li3BaSrLa3(WO4)8:Eu3+in high Eu3+doping concentrations can achieve the coordinate values (x = 0.670, y = 0.330), indicating high red color purity. The corresponding quantum yield (QY) is measured (28.36 ± 0.09%). Photoluminescence and kinetic studies showed no obvious effects due to the concentration quenching effect, cross relaxation and non-radiative energy transfer. Li3BaSrLa3(WO4)8:Eu3+can be synthesized using a simple and quick method and the comprehensive photophysical studies of the novel phosphor (Li3BaSrLa3(WO4)8:Eu3+) have been done and the potential as a practical phosphor for NUV-excited white LEDs (WLEDs) has been shown.
Original language | English |
---|---|
Pages (from-to) | 12322-12327 |
Number of pages | 6 |
Journal | Journal of Materials Chemistry C |
Volume | 3 |
Issue number | 47 |
DOIs | |
Publication status | Published - 1 Jan 2015 |
ASJC Scopus subject areas
- General Chemistry
- Materials Chemistry