TY - GEN
T1 - FashionReGen: LLM-Empowered Fashion Report Generation
AU - Ding, Yujuan
AU - Ma, Yunshan
AU - Fan, Wenqi
AU - Yao, Yige
AU - Chua, Tat Seng
AU - Li, Qing
N1 - Publisher Copyright:
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
PY - 2024/5/13
Y1 - 2024/5/13
N2 - Fashion analysis refers to the process of examining and evaluating trends, styles, and elements within the fashion industry to understand and interpret its current state, generating fashion reports. It is traditionally performed by fashion professionals based on their expertise and experience, which requires high labour cost and may also produce biased results for relying heavily on a small group of people. In this paper, to tackle the Fashion Report Generation (FashionReGen) task, we propose an intelligent Fashion Analyzing and Reporting system based the advanced Large Language Models (LLMs), debbed as GPT-FAR. Specifically, it tries to deliver FashionReGen based on effective catwalk analysis, which is equipped with several key procedures, namely, catwalk understanding, collective organization and analysis, and report generation. By posing and exploring such an open-ended, complex and domain-specific task of FashionReGen, it is able to test the general capability of LLMs in fashion domain. It also inspires the explorations of more high-level tasks with industrial significance in other domains. Video illustration and more materials of GPT-FAR can be found in https://github.com/CompFashion/FashionReGen.
AB - Fashion analysis refers to the process of examining and evaluating trends, styles, and elements within the fashion industry to understand and interpret its current state, generating fashion reports. It is traditionally performed by fashion professionals based on their expertise and experience, which requires high labour cost and may also produce biased results for relying heavily on a small group of people. In this paper, to tackle the Fashion Report Generation (FashionReGen) task, we propose an intelligent Fashion Analyzing and Reporting system based the advanced Large Language Models (LLMs), debbed as GPT-FAR. Specifically, it tries to deliver FashionReGen based on effective catwalk analysis, which is equipped with several key procedures, namely, catwalk understanding, collective organization and analysis, and report generation. By posing and exploring such an open-ended, complex and domain-specific task of FashionReGen, it is able to test the general capability of LLMs in fashion domain. It also inspires the explorations of more high-level tasks with industrial significance in other domains. Video illustration and more materials of GPT-FAR can be found in https://github.com/CompFashion/FashionReGen.
KW - Fashion Report Generation
KW - GPT
KW - Large Language Model
KW - Multimodal Understanding and Generation
UR - http://www.scopus.com/inward/record.url?scp=85194489867&partnerID=8YFLogxK
U2 - 10.1145/3589335.3651232
DO - 10.1145/3589335.3651232
M3 - Conference article published in proceeding or book
AN - SCOPUS:85194489867
T3 - WWW 2024 Companion - Companion Proceedings of the ACM Web Conference
SP - 991
EP - 994
BT - WWW 2024 Companion - Companion Proceedings of the ACM Web Conference
PB - Association for Computing Machinery, Inc
T2 - 33rd ACM Web Conference, WWW 2024
Y2 - 13 May 2024 through 17 May 2024
ER -