Fabrication of highly electrically conductive Ti/Ag/Ti tri-layer and Ti–Ag alloy thin films on PET fabrics by multi-target magnetron sputtering

Chuanmei Liu, Jiangtao Xu, Zhengqin Liu, Xin Ning, Shouxiang Jiang, Dagang Miao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

3 Citations (Scopus)


In this study Ti/Ag/Ti tri-layer and Ti–Ag alloy films were deposited on the surfaces of polyethylene terephthalate (PET) fabrics by multi-target magnetron sputtering system to fabricate highly electro-conductive textiles. Before sputtering, the fabric was treated by polyacrylic acid ester (PA) to form a continuous surface on the surface of PET fabric by padding method. The as-fabricated fabrics were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometer. And the physical properties of the coated fabrics were evaluated by electrical conductivity, contact angle (CA), flexibility and adhesion. At last, a simple electric circuit was made with the as-treated fabric to evaluate the electrical property and explore its application further. The results of the study revealed that pretreatment with PA could form a continuous film on the surface of PET fabric. The PA-coated PET fabric with Ti/Ag/Ti fabric exhibited excellent electrical property whose electrical resistivity was only 5.1 × 10 −7  Ω m, CA of 137°. The PA-coated PET fabric with Ti–Ag alloy film exhibited a rather lower electrical resistivity of 3.4 × 10 −7  Ω m, CA of about 130°. Moreover, the samples retain ideal flexibility and adhesion. Therefore this study can broaden the application area of magnetron sputtering on discontinuous surface to fabricate electrical conductive fabric. And due to the excellent electro-conductivity, this kind of fabric will be a promising material for smart textiles.

Original languageEnglish
Pages (from-to)19578-19587
Number of pages10
JournalJournal of Materials Science: Materials in Electronics
Issue number22
Publication statusPublished - 1 Nov 2018

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Cite this