Abstract
We study an important data analysis operator, which extracts the k most important groups from data (i.e., the k groups with the highest aggregate values). In a data warehousing context, an example of the above query is "find the 10 combinations of product-type and month with the largest sum of sales". The problem is challenging as the potential number of groups can be much larger than the memory capacity. We propose on-demand methods for efficient top-k groups processing, under limited memory size. In particular, we design top-k groups retrieval techniques for three representative scenarios as follows. For the scenario with data physically ordered by measure, we propose the write-optimized multi-pass sorted access algorithm (WMSA), that exploits available memory for efficient top-k groups computation. Regarding the scenario with unordered data, we develop the recursive hash algorithm (RHA), which applies hashing with early aggregation, coupled with branch-and-bound techniques and derivation heuristics for tight score bounds of hash partitions. Next, we design the clustered groups algorithm (CGA), which accelerates top-k groups processing for the case where data is clustered by a subset of group-by attributes. Extensive experiments with real and synthetic datasets demonstrate the applicability and efficiency of the proposed algorithms.
Original language | English |
---|---|
Pages (from-to) | 289-310 |
Number of pages | 22 |
Journal | Data and Knowledge Engineering |
Volume | 66 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Aug 2008 |
Externally published | Yes |
Keywords
- Optimization and performance
ASJC Scopus subject areas
- Artificial Intelligence