External counterpulsation reduces beat-to-beat blood pressure variability when augmenting blood pressure and cerebral blood flow in ischemic stroke

G. Tian, L. Xiong, W. Lin, J. Han, Xiangyan Chen, T.W.H. Leung, Y.O.Y. Soo, L.K.S. Wong

Research output: Journal article publicationJournal articleAcademic researchpeer-review

11 Citations (Scopus)

Abstract

© 2016 Korean Neurological Association.Background and PurposezzExternal counterpulsation (ECP) is a noninvasive method used to enhance cerebral perfusion by elevating the blood pressure in ischemic stroke. However, the response of the beat-to-beat blood pressure variability (BPV) in ischemic stroke patients during ECP remains unknown. MethodszzWe enrolled recent ischemic stroke patients and healthy controls. Changes in the blood flow velocities in bilateral middle cerebral arteries and the continuous beat-to-beat blood pressure before, during, and after ECP were monitored. Power spectral analysis revealed that the BPV included oscillations at very low frequency (VLF; <0.04 Hz), low frequency (LF; 0.04- 0.15 Hz), and high frequency (HF; 0.15-0.40 Hz), and the total power spectral density (TP; <0.40 Hz) and LF/HF ratio were calculated. ResultszzWe found that ECP significantly increased the systolic and diastolic blood pressures in both stroke patients and controls. ECP decreased markedly the systolic and diastolic BPVs at VLF and LF and the TP, and the diastolic BPV at HF when compared with baseline. The decreases in diastolic and systolic BPV reached 37.56% and 23.20%, respectively, at VLF, 21.15% and 12.19% at LF, 8.76% and 16.59% at HF, and 31.92% and 23.62% for the total TP in stroke patients, which did not differ from those in healthy controls. The change in flow velocity on the contralateral side was positively correlated with the total TP systolic BPV change induced by ECP (r=0.312, p=0.035). ConclusionszzECP reduces the beat-to-beat BPV when increasing the blood pressure and cerebral blood flow velocity in ischemic stroke patients. ECP might be able to improve the clinical outcome by decreasing the beat-to-beat BPV in stroke patients, and this should be explored further in future studies.
Original languageEnglish
Pages (from-to)308-315
Number of pages8
JournalJournal of Clinical Neurology (Korea)
Volume12
Issue number3
DOIs
Publication statusPublished - 1 Jul 2016
Externally publishedYes

Keywords

  • Blood pressure
  • Blood pressure variability
  • Cerebral hemodynamics
  • External counterpulsation
  • Ischemic stroke

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'External counterpulsation reduces beat-to-beat blood pressure variability when augmenting blood pressure and cerebral blood flow in ischemic stroke'. Together they form a unique fingerprint.

Cite this