ExposureDiffusion: Learning to Expose for Low-light Image Enhancement

Yufei Wang, Yi Yu, Wenhan Yang, Lanqing Guo, Lap Pui Chau, Alex C. Kot, Bihan Wen

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

8 Citations (Scopus)

Abstract

Previous raw image-based low-light image enhancement methods predominantly relied on feed-forward neural networks to learn deterministic mappings from low-light to normally-exposed images. However, they failed to capture critical distribution information, leading to visually undesirable results. This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model. Different from a vanilla diffusion model that has to perform Gaussian denoising, with the injected physics-based exposure model, our restoration process can directly start from a noisy image instead of pure noise. As such, our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models. To make full use of the advantages of different intermediate steps, we further propose an adaptive residual layer that effectively screens out the side-effect in the iterative refinement when the intermediate results have been already well-exposed. The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks. We evaluate the proposed method on various public benchmarks, achieving promising results with consistent improvements using different exposure models and backbones. Besides, the proposed method achieves better generalization capacity for unseen amplifying ratios and better performance than a larger feedforward neural model when few parameters are adopted. The code is released at https://github.com/wyf0912/ExposureDiffusion.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages12404-12414
Number of pages11
ISBN (Electronic)9798350307184
DOIs
Publication statusPublished - Oct 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'ExposureDiffusion: Learning to Expose for Low-light Image Enhancement'. Together they form a unique fingerprint.

Cite this