Experimental study on the confinement of high-strength concrete columns with large rupture strain FRP composites

N. Sirach, S. T. Smith, T. Yu, A. Mostafa, Z. S. Tang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review


High-strength concrete (HSC) is finding increasing use in multi-storey construction in recent years. The performance of such structures can, however, be compromised by the high stiffness and low ductility of HSC. Confinement of HSC columns with fibre-reinforced polymers (FRP) can alleviate these shortcomings. To date, research attention on confinement is primarily focused on FRP composites with rupture strains up to approximately 3%, although recently introduced polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) fibres exhibit rupture strains of up to 10%. The use of HSC with large rupture strain (LRS) FRP composites in confinement applications is highly attractive because the efficient combination of these high-performance materials can lead to very high-performance columns. This paper presents an experimental study on the compressive behaviour of circular HSC columns confined with LRS FRP and traditional FRP composites. Results show that LRS FRP-confined columns exhibit similar strength enhancement to those traditional FRP-confined columns, however the ductility is significantly improved. In addition, the LRS FRP-confined HSC columns experience strength softening after concrete crushing.

Original languageEnglish
Title of host publicationAPFIS 2019 Proceedings - 7th Asia-Pacific Conference on FRP in Structures
EditorsScott T. Smith, Tao Yu, Dilum Fernando, Zhenyu Wang
PublisherAPFIS Conference Series
ISBN (Electronic)9780648752899
Publication statusPublished - 1 Dec 2019
Externally publishedYes
Event7th Asia-Pacific Conference on FRP in Structures, APFIS 2019 - Brisbane, Australia
Duration: 10 Dec 201913 Dec 2019

Publication series

NameAPFIS 2019 Proceedings - 7th Asia-Pacific Conference on FRP in Structures


Conference7th Asia-Pacific Conference on FRP in Structures, APFIS 2019


  • Confinement
  • Experimental study
  • FRP
  • High strength concrete
  • Large rupture strain

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Materials Science(all)

Cite this