Abstract
We present an experimental study of the vitreous motion induced by saccadic eye movements. A magnified model of the vitreous chamber has been employed, consisting of a spherical cavity carved in a perspex cylindrical container, which is able to rotate with a prescribed time law. Care has been taken to correctly reproduce real saccadic eye movements. The spherical cavity is filled with glycerol and the flow field is measured on the equatorial plane orthogonal to the axis of rotation, through the PIV technique. Visualizations of the fully three-dimensional flow suggest that it essentially occurs on planes perpendicular to the axis of rotation, the motion orthogonal to such planes being smaller by three to four orders of magnitude. Theoretical results, based on a simplified solution, are in very good agreement with the experimental findings. The maximum value of the shear stress at the wall, which is thought to play a possibly important role in the pathogenesis of retinal detachment, does not significantly depend on the amplitude of saccadic movements. This suggests that relatively small eye rotations, being much more frequent than large movements, are mainly responsible for vitreous stresses on the retina. Results also illustrate the dependence of the maximum shear stress at the wall from the vitreous viscosity.
Original language | English |
---|---|
Pages (from-to) | 4729-4743 |
Number of pages | 15 |
Journal | Physics in Medicine and Biology |
Volume | 50 |
Issue number | 19 |
DOIs | |
Publication status | Published - 7 Oct 2005 |
Externally published | Yes |
ASJC Scopus subject areas
- Radiological and Ultrasound Technology
- Radiology Nuclear Medicine and imaging