Experimental investigation of an Auto-Switching SH TEG/PCM unit for consistent All-Day electric power generation

Jinglong Wang, Lin Lu, Kai Jiao, Miao Han

Research output: Journal article publicationJournal articleAcademic researchpeer-review

3 Citations (Scopus)

Abstract

In the pursuit of sustainable energy solutions, combining a thermoelectric generator (TEG) with a phase change material (PCM) powered by solar energy shows promise for consistent electricity generation (EG). Despite extensive research on solar-heating TEG/PCM systems, there is a lack of studies directly utilizing sunlight, with heaters commonly used as substitutes, thus overlooking the influence of solar radiation spectrum and intensity. This study examines auto-switching SH TEG/PCM unit performance under simulated solar irradiation, presenting an experimental setup and theoretical model for system analysis. Results show that the total EG over 24 h relies on the EG during the lighted operation phase (LOP). Once the PCM in the aluminum box (AB) fully melts, a secondary temperature rise near the bottom of the top cover occurs during the transition to static phase (TSP). Unit 80-AB achieves the highest total EG under a total solar irradiance of 4 kW⋅h/m2, with values of 3.72 and 0.15 W⋅h/m2 for the LOP and TSP, and when exposed to 8 SSs for 5 h, it peaks at 4.4 and 0.19 W⋅h/m2 for the LOP and TSP, respectively. Additionally, the EG for unit 80-AB is maximal after almost 10-hour exposure, with the insulated unit featuring a film achieving a total EG of 8.78 W⋅h/m2, exceeding the bare unit and insulated unit by 1.06 and 1.54 W⋅h/m2, respectively. During the LOP, the experimental unit 80-AB can achieve a maximum increase in EG of 7.71 W⋅h/m2 in the bare mode compared to the control unit. The open-circuit voltage of unit 80-AB reaches approximately 110 mV, with the maximum output power amounting to 0.34 W/m2 when the load resistance is 5 Ω. The proposed units present a practical solution for continuous EG throughout the day, guaranteeing a reliable energy provision and heralding an environmentally sustainable energy paradigm.

Original languageEnglish
Article number119556
JournalEnergy Conversion and Management
Volume327
DOIs
Publication statusPublished - 1 Mar 2025

Keywords

  • 24-h power generation
  • Phase change material
  • Solar energy
  • Solar simulators
  • Thermal and electrical performance
  • Thermoelectric generators

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Experimental investigation of an Auto-Switching SH TEG/PCM unit for consistent All-Day electric power generation'. Together they form a unique fingerprint.

Cite this