Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite

Abid Hussain, C. Y. Tso, Christopher Y.H. Chao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

164 Citations (Scopus)


It is necessary for electric vehicles (EVs) and hybrid electric vehicles (HEVs) to have a highly efficient thermal management system to maintain high powered lithium ion batteries within permissible temperature limits. In this study, an efficient thermal management system for high powered lithium ion batteries using a novel composite (nickel foam-paraffin wax) is designed and investigated experimentally. The results have been compared with two other cases: a natural air cooling mode and a cooling mode with pure phase change materials (PCM). The results indicate that the safety demands of lithium ion batteries cannot be fulfilled using natural air convection as the thermal management mode. The use of PCM can dramatically reduce the surface temperature within the permissible range due to heat absorption by the PCM undergoing phase change. This effect can be further enlarged by using the nickel foam-paraffin composite, showing a temperature reduction of 31% and 24% compared to natural air convection and pure PCM, respectively under 2 C discharge rate. The effect of the geometric parameters of the foam on the battery surface temperature has also been studied. The battery surface temperature decreases with the decrease of porosity and the pore density of the metal foam. On the other hand, the discharge capacity increases with the increase in porosity, but decreases with pore density.

Original languageEnglish
Pages (from-to)209-218
Number of pages10
Publication statusPublished - 15 Nov 2016


  • Discharge capacity
  • Lithium ion batteries
  • Nickel foam
  • Phase change material
  • Thermal management

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Modelling and Simulation
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Pollution
  • General Energy
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Management, Monitoring, Policy and Law
  • Electrical and Electronic Engineering


Dive into the research topics of 'Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite'. Together they form a unique fingerprint.

Cite this