Abstract
CO2 capture is projected as one of the pragmatic approaches to deal with the global warming phenomenon. Adsorption-based CO2 capture is considered an economically attractive option to reduce CO2 emission. The success of the adsorption-based capture primarily relies on adsorbents and thus a variety of adsorbents have been investigated in the literature. We here report a high surface area (210.2 m2/g) exfoliated Ni-Al LDH nanoplatelet as a promising candidate for CO2 capture at an intermediate temperature of 200 °C applicable to integrated gasification combined cycle (IGCC) and sorption enhanced water gas shift (SEWGS) reactions. The materials were well characterized by PXRD, TGA, FTIR, TEM, ICP-OES, and N2 adsorption surface area, and pore size distribution techniques. A unique nanoflower morphology comprising of exfoliated LDH platelets of ca. 5 layer thickness was obtained. The CO2 capture capacity (0.66 mmol/g) of the exfoliated Ni-Al LDH nanoplatelet is comparable to that of the widely reported Mg-Al LDH-derived mixed oxides and MgO-based adsorbents. Provided that Ni-Al and other transition metal LDH materials are known to exhibit superior catalytic properties for CO2 methanation, this work could pave the way for development of dual-functional materials for CO2 capture and conversion.
Original language | English |
---|---|
Pages (from-to) | 365-371 |
Number of pages | 7 |
Journal | Journal of Hazardous Materials |
Volume | 374 |
DOIs | |
Publication status | Published - 15 Jul 2019 |
Keywords
- CO capture
- Exfoliation
- Nanosheets
- Ni-Al LDH
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- Waste Management and Disposal
- Pollution
- Health, Toxicology and Mutagenesis