Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries

Zheng Long Xu, Shenghuang Lin, Nicolas Onofrio, Limin Zhou, Fangyi Shi, Wei Lu, Kisuk Kang, Qiang Zhang, Shu Ping Lau

Research output: Journal article publicationJournal articleAcademic researchpeer-review

305 Citations (Scopus)


Lithium sulfur batteries with high energy densities are promising next-generation energy storage systems. However, shuttling and sluggish conversion of polysulfides to solid lithium sulfides limit the full utilization of active materials. Physical/chemical confinement is useful for anchoring polysulfides, but not effective for utilizing the blocked intermediates. Here, we employ black phosphorus quantum dots as electrocatalysts to overcome these issues. Both the experimental and theoretical results reveal that black phosphorus quantum dots effectively adsorb and catalyze polysulfide conversion. The activity is attributed to the numerous catalytically active sites on the edges of the quantum dots. In the presence of a small amount of black phosphorus quantum dots, the porous carbon/sulfur cathodes exhibit rapid reaction kinetics and no shuttling of polysulfides, enabling a low capacity fading rate (0.027% per cycle over 1000 cycles) and high areal capacities. Our findings demonstrate application of a metal-free quantum dot catalyst for high energy rechargeable batteries.

Original languageEnglish
Article number4164
JournalNature Communications
Issue number1
Publication statusPublished - 1 Dec 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries'. Together they form a unique fingerprint.

Cite this