Exceeding three-electron reactions in Na3+2xMn1+xTi1−x(PO4)3NASICON cathodes with high energy density for sodium-ion batteries

Jiefei Liu, Kangshou Lin, Yu Zhao, Yu Zhou, Xianhua Hou, Xiang Liu, Hongtao Lou, Kwok Ho Lam, Fuming Chen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

63 Citations (Scopus)

Abstract

Sodium super ionic conductor (NASICON) materials are considered as an attractive cathode in sodium-ion batteries. Although the three-electron reactions in Na3MnTi(PO4)3have greatly enhanced the capacity of NASICON-structured materials, the low potential from Ti3+/4+redox reaction and undesirable initial coulombic efficiency (ICE) have inhibited its practical application. Herein, NASICON structured Na3+2xMn1+xTi1−x(PO4)3was designed and synthesized by the atomic-ratio-controlled method. Impressively, the increase in the Mn content not only significantly enhances the average voltage, but also increases the theoretical capacity with more than three-electron reactions. Na3+2xMn1+xTi1−x(PO4)3can deliver an extra-high capacity of 181.4 mA h g−1at 0.1C (1C = 150 mA h g−1), and 100.4 mA h g−1at 10C during the rate tests. Whenx= 0.15 and 0.2, the energy density is up to 560.2 and 539.5 W h kg−1at 0.1C, which is significantly higher than 442.4 W h kg−1withx= 0,i.e.Na3MnTi(PO4)3. The capacity retention is 87.4% at 1C after 500 cycles and 83% at 5C after 1000 cycles, respectively. In addition, the ICE is as high as 89.2% after the introduction of more Na ions in the pristine structure. The structural evolution and electrochemical reaction mechanism were further confirmed byex situXRD, XPS and TEM. This work provides a new insight into controllable design of low cost, high capacity and energy density NASICON-structured materials for SIBs.

Original languageEnglish
Pages (from-to)10437-10446
Number of pages10
JournalJournal of Materials Chemistry A
Volume9
Issue number16
DOIs
Publication statusPublished - 28 Apr 2021

ASJC Scopus subject areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'Exceeding three-electron reactions in Na3+2xMn1+xTi1−x(PO4)3NASICON cathodes with high energy density for sodium-ion batteries'. Together they form a unique fingerprint.

Cite this